# Tiger (EntityTopic, 11)

ExPar: [#img] is obsolete, use [#embed] instead
Diagram created by Keiji, adapted from a sketch from Secret in this forum post.

## Equations

• Variables:
a ⇒ major radius of the tiger in the xy plane
b ⇒ major radius of the tiger in the zw plane
r ⇒ minor radius of the tiger
• All points (x, y, z, w) that lie on the surcell of a tiger will satisfy the following equation:
(√(x2 + y2) − a)2 + (√(z2 + w2) − b)2 = r2
x = a cos(θ1) + r cos(θ1)cos(θ3)
y = a sin(θ1) + r sin(θ1)cos(θ3)
z = b cos(θ2) + r cos(θ2)sin(θ3)
w = b sin(θ2) + r sin(θ2)sin(θ3)
total edge length = Unknown
total surface area = Unknown
surcell volume = Unknown
bulk = Unknown
For realms parallel to one of the axes, they are formed by rotating Cassini ovals around a line parallel with their major axis, and not intersecting the ovals.

## Cross-sections

Jonathan Bowers aka Polyhedron Dude created these two excellent cross-section renderings: ExPar: [#img] is obsolete, use [#embed] instead ExPar: [#img] is obsolete, use [#embed] instead

 Notable Tetrashapes Regular: pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron Powertopes: triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate Circular: glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder Torii: tiger • torisphere • spheritorus • torinder • ditorus