Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 26: Line 26:
*The parametric equations are:
*The parametric equations are:
<blockquote>
<blockquote>
-
x = (R + (r + a cos th<sub>3</sub>) cos th<sub>2</sub>) cos th<sub>1</sub> <br>
+
x = (R + (r + ρ cos th<sub>3</sub>) cos th<sub>2</sub>) cos th<sub>1</sub> <br>
-
y = (R + (r + a cos th<sub>3</sub>) cos th<sub>2</sub>) sin th<sub>1</sub><br>
+
y = (R + (r + ρ cos th<sub>3</sub>) cos th<sub>2</sub>) sin th<sub>1</sub><br>
-
z = (r + a cos th<sub>3</sub>) sin th<sub>2</sub> <br>
+
z = (r + ρ cos th<sub>3</sub>) sin th<sub>2</sub> <br>
w = a sin th<sub>3</sub> </blockquote>
w = a sin th<sub>3</sub> </blockquote>
*The [[hypervolume]]s of a ditorus are given by:
*The [[hypervolume]]s of a ditorus are given by:
<blockquote>total surface area = 0<br>
<blockquote>total surface area = 0<br>
-
surcell volume = 8π<sup>3</sup>Rra<br>
+
surcell volume = 8π<sup>3</sup>Rrρ<br>
-
bulk = 4π<sup>3</sup>a<sup>2</sup>rR</blockquote>
+
bulk = 4π<sup>3</sup>ρ<sup>2</sup>rR</blockquote>
*The [[realmic]] [[cross-section]]s (''n'') of a ditorus are:
*The [[realmic]] [[cross-section]]s (''n'') of a ditorus are:

Revision as of 10:28, 12 March 2011


Equations

  • Variables:
R ⇒ major-major radius of the ditorus
r ⇒ major-minor radius of the ditorus
ρ ⇒ minor-minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(√((√(x2 + y2) - ρ)2 + z2) - r)2 + w2 = R2
  • The parametric equations are:
x = (R + (r + ρ cos th3) cos th2) cos th1
y = (R + (r + ρ cos th3) cos th2) sin th1
z = (r + ρ cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rrρ
bulk = 4π3ρ2rR
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


7a. (III)I
Spherinder
7b. ((III)I)
Toraspherinder
8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
List of toratopes