Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 8: Line 8:
| ssc2=T(((2)1)1)
| ssc2=T(((2)1)1)
| extra={{STS Toratope
| extra={{STS Toratope
-
| holeseq=[3]
+
| expand=[[Triocylinder|222]]
| notation=(((II)I)I)
| notation=(((II)I)I)
| index=8b
| index=8b

Revision as of 15:20, 30 November 2009


The ditorus is unique as it is the only rotope in four dimensions or less that has a pocket.

Equations

  • Variables:
R ⇒ major radius of the ditorus
r ⇒ middle radius of the ditorus
a ⇒ minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(sqrt((sqrt(x2 + y2) - a)2 + z2) - r)2 + w2 = R2
  • The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


7a. (III)I
Spherinder
7b. ((III)I)
Toraspherinder
8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
List of toratopes