Ditorus (EntityTopic, 11)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 26: | Line 26: | ||
*The parametric equations are: | *The parametric equations are: | ||
<blockquote> | <blockquote> | ||
- | x = (R + (r + | + | x = (R + (r + ρ cos th<sub>3</sub>) cos th<sub>2</sub>) cos th<sub>1</sub> <br> |
- | y = (R + (r + | + | y = (R + (r + ρ cos th<sub>3</sub>) cos th<sub>2</sub>) sin th<sub>1</sub><br> |
- | z = (r + | + | z = (r + ρ cos th<sub>3</sub>) sin th<sub>2</sub> <br> |
w = a sin th<sub>3</sub> </blockquote> | w = a sin th<sub>3</sub> </blockquote> | ||
*The [[hypervolume]]s of a ditorus are given by: | *The [[hypervolume]]s of a ditorus are given by: | ||
<blockquote>total surface area = 0<br> | <blockquote>total surface area = 0<br> | ||
- | surcell volume = 8π<sup>3</sup> | + | surcell volume = 8π<sup>3</sup>Rrρ<br> |
- | bulk = 4π<sup>3</sup> | + | bulk = 4π<sup>3</sup>ρ<sup>2</sup>rR</blockquote> |
*The [[realmic]] [[cross-section]]s (''n'') of a ditorus are: | *The [[realmic]] [[cross-section]]s (''n'') of a ditorus are: |
Revision as of 10:28, 12 March 2011
Equations
- Variables:
R ⇒ major-major radius of the ditorus
r ⇒ major-minor radius of the ditorus
ρ ⇒ minor-minor radius of the ditorus
- All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(√((√(x2 + y2) - ρ)2 + z2) - r)2 + w2 = R2
- The parametric equations are:
x = (R + (r + ρ cos th3) cos th2) cos th1
y = (R + (r + ρ cos th3) cos th2) sin th1
z = (r + ρ cos th3) sin th2
w = a sin th3
- The hypervolumes of a ditorus are given by:
total surface area = 0
surcell volume = 8π3Rrρ
bulk = 4π3ρ2rR
- The realmic cross-sections (n) of a ditorus are:
Unknown
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |
7a. (III)I Spherinder | 7b. ((III)I) Toraspherinder | 8a. ((II)I)I Torinder | 8b. (((II)I)I) Ditorus | 9a. IIIII Penteract | 9b. (IIIII) Pentasphere |
List of toratopes |