Glome (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 8: Line 8:
| pv_circle=1
| pv_circle=1
| pv_square=<sup>π<sup>2</sup></sup>⁄<sub>32</sub> ≈ 0.3084
| pv_square=<sup>π<sup>2</sup></sup>⁄<sub>32</sub> ≈ 0.3084
-
| extra={{STS Rotope
+
| extra={{STS Tapertope
-
| attrib=pure
+
| order=1, 0
-
| notation=4 (xyzw)
+
| notation=4
-
| index=16
+
| index=12
 +
}}{{STS Toratope
 +
| holeseq=[0, 0, 1]
 +
| notation=(IIII)
 +
| index=4b
}}{{STS Bracketope
}}{{STS Bracketope
| index=40
| index=40
Line 36: Line 40:
{{Tetrashapes}}
{{Tetrashapes}}
-
{{Rotope Nav|15|16|17|III'<br>Cubic pyramid|(IIII)<br>Glome|II'I<br>Square pyramidal prism|chora}}
+
{{Tapertope Nav|11|12|13|1<sup>2</sup><br>Tetrahedron|4<br>Glome|31<br>Spherinder|chora}}
 +
{{Toratope Nav B|3|4|5|(II)I<br>Cylinder|((II)I)<br>Torus|IIII<br>Tesseract|(IIII)<br>Glome|(II)II<br>Cubinder|((II)II)<br>Toracubinder|chora}}
{{Bracketope Nav|39|40|41|(<xy>zw)<br>Narrow dicrind|(xyzw)<br>Glome|[<xy><zw>]<br>Small tesseract|chora}}
{{Bracketope Nav|39|40|41|(<xy>zw)<br>Narrow dicrind|(xyzw)<br>Glome|[<xy><zw>]<br>Small tesseract|chora}}

Revision as of 20:34, 24 November 2009

The glome, also known as the 3-sphere, is the 4-dimensional equivalent of a 3D sphere. It consists of a curved 3-manifold that forms circular intersections with planes, and spherical intersections with hyperplanes. The set of points midway between two antipodal points form a sphere, hence one may think of the glome as having a spherical "equator".

Its projection to 3-space is a sphere—or, more properly, a ball: the image of its bounding manifold covers all points in a ball twice, once for each hemi-glome.

Equations

  • Variables:
r ⇒ radius of the glome
  • All points (x, y, z, w) that lie on the surcell of a glome will satisfy the following equation:
x2 + y2 + z2 + w2 = r2
total edge length = 0
total surface area = 0
surcell volume = 2π2r3
bulk = 2-1π2r4
[!x,!y,!z,!w] ⇒ sphere of radius (rcos(πn/2))


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


11. 12
Tetrahedron
12. 4
Glome
13. 31
Spherinder
List of tapertopes


3a. (II)I
Cylinder
3b. ((II)I)
Torus
4a. IIII
Tesseract
4b. (IIII)
Glome
5a. (II)II
Cubinder
5b. ((II)II)
Toracubinder
List of toratopes


39. (<xy>zw)
Narrow dicrind
40. (xyzw)
Glome
41. [<xy><zw>]
Small tesseract
List of bracketopes