Glome (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 8: | Line 8: | ||
| pv_circle=1 | | pv_circle=1 | ||
| pv_square=<sup>π<sup>2</sup></sup>⁄<sub>32</sub> ≈ 0.3084 | | pv_square=<sup>π<sup>2</sup></sup>⁄<sub>32</sub> ≈ 0.3084 | ||
- | | extra={{STS | + | | extra={{STS Tapertope |
- | | | + | | order=1, 0 |
- | | notation=4 ( | + | | notation=4 |
- | | index= | + | | index=12 |
+ | }}{{STS Toratope | ||
+ | | holeseq=[0, 0, 1] | ||
+ | | notation=(IIII) | ||
+ | | index=4b | ||
}}{{STS Bracketope | }}{{STS Bracketope | ||
| index=40 | | index=40 | ||
Line 36: | Line 40: | ||
{{Tetrashapes}} | {{Tetrashapes}} | ||
- | {{ | + | {{Tapertope Nav|11|12|13|1<sup>2</sup><br>Tetrahedron|4<br>Glome|31<br>Spherinder|chora}} |
+ | {{Toratope Nav B|3|4|5|(II)I<br>Cylinder|((II)I)<br>Torus|IIII<br>Tesseract|(IIII)<br>Glome|(II)II<br>Cubinder|((II)II)<br>Toracubinder|chora}} | ||
{{Bracketope Nav|39|40|41|(<xy>zw)<br>Narrow dicrind|(xyzw)<br>Glome|[<xy><zw>]<br>Small tesseract|chora}} | {{Bracketope Nav|39|40|41|(<xy>zw)<br>Narrow dicrind|(xyzw)<br>Glome|[<xy><zw>]<br>Small tesseract|chora}} |
Revision as of 20:34, 24 November 2009
The glome, also known as the 3-sphere, is the 4-dimensional equivalent of a 3D sphere. It consists of a curved 3-manifold that forms circular intersections with planes, and spherical intersections with hyperplanes. The set of points midway between two antipodal points form a sphere, hence one may think of the glome as having a spherical "equator".
Its projection to 3-space is a sphere—or, more properly, a ball: the image of its bounding manifold covers all points in a ball twice, once for each hemi-glome.
Equations
- Variables:
r ⇒ radius of the glome
- All points (x, y, z, w) that lie on the surcell of a glome will satisfy the following equation:
x2 + y2 + z2 + w2 = r2
- The hypervolumes of a glome are given by:
total edge length = 0
total surface area = 0
surcell volume = 2π2r3
bulk = 2-1π2r4
- The realmic cross-sections (n) of a glome are:
[!x,!y,!z,!w] ⇒ sphere of radius (rcos(πn/2))
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |
11. 12 Tetrahedron | 12. 4 Glome | 13. 31 Spherinder |
List of tapertopes |
3a. (II)I Cylinder | 3b. ((II)I) Torus | 4a. IIII Tesseract | 4b. (IIII) Glome | 5a. (II)II Cubinder | 5b. ((II)II) Toracubinder |
List of toratopes |
39. (<xy>zw) Narrow dicrind | 40. (xyzw) Glome | 41. [<xy><zw>] Small tesseract |
List of bracketopes |