Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (wrong...)
m
Line 15: Line 15:
== Equations ==
== Equations ==
*Variables:
*Variables:
-
<blockquote>''R'' ⇒ major radius of the ditorus<br>
+
<blockquote>''R'' ⇒ major-major radius of the ditorus<br>
-
''r'' ⇒ middle radius of the ditorus<br>
+
''r'' ⇒ major-minor radius of the ditorus<br>
-
''a'' ⇒ minor radius of the ditorus</blockquote>
+
''ρ'' ⇒ minor-minor radius of the ditorus</blockquote>
*All points (''x'', ''y'', ''z'', ''w'') that lie on the [[surcell]] of a ditorus will satisfy the following equation:
*All points (''x'', ''y'', ''z'', ''w'') that lie on the [[surcell]] of a ditorus will satisfy the following equation:
<blockquote>
<blockquote>
-
(sqrt((sqrt(x<sup>2</sup> + y<sup>2</sup>) - a)<sup>2</sup> + z<sup>2</sup>) - r)<sup>2</sup> + w<sup>2</sup> = R<sup>2</sup>
+
((((''x''<sup>2</sup> + ''y''<sup>2</sup>) - ''ρ'')<sup>2</sup> + ''z''<sup>2</sup>) - ''r'')<sup>2</sup> + ''w''<sup>2</sup> = ''R''<sup>2</sup>
</blockquote>
</blockquote>

Revision as of 10:28, 12 March 2011


Equations

  • Variables:
R ⇒ major-major radius of the ditorus
r ⇒ major-minor radius of the ditorus
ρ ⇒ minor-minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(√((√(x2 + y2) - ρ)2 + z2) - r)2 + w2 = R2
  • The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


7a. (III)I
Spherinder
7b. ((III)I)
Toraspherinder
8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
List of toratopes