Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 7: Line 7:
| ssc=<nowiki>[[</nowiki>(xy)z]Tw]T
| ssc=<nowiki>[[</nowiki>(xy)z]Tw]T
| ssc2=T(((2)1)1)
| ssc2=T(((2)1)1)
-
| extra={{STS Rotope
+
| extra={{STS Toratope
-
| attrib=pure
+
| holeseq=[3]
-
| notation=((21)1) (((xy)z)w)
+
| notation=(((II)I)I)
-
| index=42
+
| index=8b
}}}}
}}}}
Line 41: Line 41:
<blockquote>''Unknown''</blockquote>
<blockquote>''Unknown''</blockquote>
{{Tetrashapes}}
{{Tetrashapes}}
-
{{Rotope Nav|41|42|43|((II)I)'<br>Toric pyramid|(((II)I)I)<br>Ditorus|(II)(II)<br>Duocylinder|chora}}
+
{{Toratope Nav B|7|8|9|(III)I<br>Spherinder|((III)I)<br>Toraspherinder|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|chora}}

Revision as of 20:49, 24 November 2009


The ditorus is unique as it is the only rotope in four dimensions or less that has a pocket.

Equations

  • Variables:
R ⇒ major radius of the ditorus
r ⇒ middle radius of the ditorus
a ⇒ minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(sqrt((sqrt(x2 + y2) - a)2 + z2) - r)2 + w2 = R2
  • The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


7a. (III)I
Spherinder
7b. ((III)I)
Toraspherinder
8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
List of toratopes