Ditorus (EntityTopic, 11)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 7: | Line 7: | ||
| ssc=<nowiki>[[</nowiki>(xy)z]Tw]T | | ssc=<nowiki>[[</nowiki>(xy)z]Tw]T | ||
| ssc2=T(((2)1)1) | | ssc2=T(((2)1)1) | ||
- | | extra={{STS | + | | extra={{STS Toratope |
- | | | + | | holeseq=[3] |
- | | notation= | + | | notation=(((II)I)I) |
- | | index= | + | | index=8b |
}}}} | }}}} | ||
Line 41: | Line 41: | ||
<blockquote>''Unknown''</blockquote> | <blockquote>''Unknown''</blockquote> | ||
{{Tetrashapes}} | {{Tetrashapes}} | ||
- | {{ | + | {{Toratope Nav B|7|8|9|(III)I<br>Spherinder|((III)I)<br>Toraspherinder|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|chora}} |
Revision as of 20:49, 24 November 2009
The ditorus is unique as it is the only rotope in four dimensions or less that has a pocket.
Equations
- Variables:
R ⇒ major radius of the ditorus
r ⇒ middle radius of the ditorus
a ⇒ minor radius of the ditorus
- All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(sqrt((sqrt(x2 + y2) - a)2 + z2) - r)2 + w2 = R2
- The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
- The hypervolumes of a ditorus are given by:
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
- The realmic cross-sections (n) of a ditorus are:
Unknown
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |
7a. (III)I Spherinder | 7b. ((III)I) Toraspherinder | 8a. ((II)I)I Torinder | 8b. (((II)I)I) Ditorus | 9a. IIIII Penteract | 9b. (IIIII) Pentasphere |
List of toratopes |