Spheritorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 5: Line 5:
| genus=0
| genus=0
| ssc2=T((2)2)
| ssc2=T((2)2)
-
| extra={{STS Rotope
+
| extra={{STS Toratope
-
| attrib=pure
+
| holeseq=[1, 1]
-
| notation=(211) ((xy)zw)
+
| notation=((II)II)
-
| index=36
+
| index=5b
}}}}
}}}}
Line 37: Line 37:
<blockquote>''Unknown''</blockquote>
<blockquote>''Unknown''</blockquote>
{{Tetrashapes}}
{{Tetrashapes}}
-
{{Rotope Nav|35|36|37|(II)I'<br>Cylindrone|((II)II)<br>Toracubinder|(II)'I<br>Coninder|chora}}
+
{{Toratope Nav B|4|5|6|IIII<br>Tesseract|(IIII)<br>Glome|(II)II<br>Cubinder|((II)II)<br>Toracubinder|(II)(II)<br>Duocylinder|((II)(II))<br>Tiger|chora}}

Revision as of 20:42, 24 November 2009


The toracubinder is a special case of a surcell of revolution where the base is a cylinder.

Equations

  • Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
  • All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


4a. IIII
Tesseract
4b. (IIII)
Glome
5a. (II)II
Cubinder
5b. ((II)II)
Toracubinder
6a. (II)(II)
Duocylinder
6b. ((II)(II))
Tiger
List of toratopes