Glome (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m (rm bracket) |
(update to STS) |
||
Line 1: | Line 1: | ||
- | {{Shape | + | {{STS Shape |
- | + | ||
| name=Glome | | name=Glome | ||
| dim=4 | | dim=4 | ||
| elements=1, 0, 0, 0 | | elements=1, 0, 0, 0 | ||
| genus=0 | | genus=0 | ||
- | |||
| ssc=(xyzw) | | ssc=(xyzw) | ||
- | |||
- | |||
- | |||
| pv_circle=1 | | pv_circle=1 | ||
| pv_square=<sup>π<sup>2</sup></sup>⁄<sub>32</sub> ≈ 0.3084 | | pv_square=<sup>π<sup>2</sup></sup>⁄<sub>32</sub> ≈ 0.3084 | ||
- | }} | + | | extra={{STS Rotope |
+ | | attrib=pure | ||
+ | | notation=4 (xyzw) | ||
+ | | index=16 | ||
+ | }}{{STS Bracketope | ||
+ | | index=40 | ||
+ | }}}} | ||
== Equations == | == Equations == |
Revision as of 15:26, 14 March 2008
Equations
- Variables:
r ⇒ radius of the glome
- All points (x, y, z, w) that lie on the surcell of a glome will satisfy the following equation:
x2 + y2 + z2 + w2 = r2
- The hypervolumes of a glome are given by:
total edge length = 0
total surface area = 0
surcell volume = 2π2r3
bulk = 2-1π2r4
- The realmic cross-sections (n) of a glome are:
[!x,!y,!z,!w] ⇒ sphere of radius (rcos(πn/2))
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |
39. (<xy>zw) Narrow dicrind | 40. (xyzw) Glome | 41. [<xy><zw>] Small tesseract |
List of bracketopes |