Spheritorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (rm "geometry")
m
Line 1: Line 1:
-
{{Shape|Toracubinder|''No image''|4|1, ?, ?, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]]Q|(211) ((x,y),z,w)|N/A|N/A|N/A|36|N/A|N/A|pure}}
+
{{Shape
 +
| attrib=pure
 +
| name=Toracubinder
 +
| dim=4
 +
| elements=1, ?, ?, 0
 +
| genus=0
 +
| 20=SSC
 +
| ssc=[xyz], [x<sup>3</sup>] or {G4<sup>3</sup>}
 +
| rns=(211) ((x,y),z,w)
 +
| bracket=[xyz]
 +
| rot_i=36
 +
}}
 +
 
The '''toracubinder''' is a special case of a [[surcell of revolution]] where the base is a [[cylinder]].  
The '''toracubinder''' is a special case of a [[surcell of revolution]] where the base is a [[cylinder]].  

Revision as of 19:21, 19 November 2007

Template:Shape

The toracubinder is a special case of a surcell of revolution where the base is a cylinder.

Equations

  • Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
  • All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus

Template:Rotope Nav