Spheritorus (EntityTopic, 11)
From Hi.gher. Space
(Difference between revisions)
m |
m (rm "geometry") |
||
Line 1: | Line 1: | ||
{{Shape|Toracubinder|''No image''|4|1, ?, ?, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]]Q|(211) ((x,y),z,w)|N/A|N/A|N/A|36|N/A|N/A|pure}} | {{Shape|Toracubinder|''No image''|4|1, ?, ?, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]]Q|(211) ((x,y),z,w)|N/A|N/A|N/A|36|N/A|N/A|pure}} | ||
- | |||
- | |||
The '''toracubinder''' is a special case of a [[surcell of revolution]] where the base is a [[cylinder]]. | The '''toracubinder''' is a special case of a [[surcell of revolution]] where the base is a [[cylinder]]. | ||
- | + | == Equations == | |
*Variables: | *Variables: | ||
<blockquote>''R'' ⇒ major radius of the toracubinder<br> | <blockquote>''R'' ⇒ major radius of the toracubinder<br> |
Revision as of 20:23, 22 September 2007
Template:Shape The toracubinder is a special case of a surcell of revolution where the base is a cylinder.
Equations
- Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
- All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
- The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
- The hypervolumes of a toracubinder are given by:
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
- The realmic cross-sections (n) of a toracubinder are:
Unknown
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |