Torisphere (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 19: Line 19:
''R'' ⇒ major radius of the toraspherinder<br></blockquote>
''R'' ⇒ major radius of the toraspherinder<br></blockquote>
-
*All points (''x'', ''y'', ''z'', ''w'') that lie on the [[surcell]] of a toraspherinder will satisfy the following equation:{{hmm}}
+
*All points (''x'', ''y'', ''z'', ''w'') that lie on the [[surcell]] of a toraspherinder will satisfy the following equation:
<blockquote>(sqrt(x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>)-R)<sup>2</sup> + w<sup>2</sup> = r<sup>2</sup></blockquote>
<blockquote>(sqrt(x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>)-R)<sup>2</sup> + w<sup>2</sup> = r<sup>2</sup></blockquote>

Revision as of 14:47, 26 November 2009


The toraspherinder is a special case of a surcell of revolution where the base is a sphere.

Equations

  • Variables:
r ⇒ minor radius of the toraspherinder
R ⇒ major radius of the toraspherinder
  • All points (x, y, z, w) that lie on the surcell of a toraspherinder will satisfy the following equation:
(sqrt(x2+y2+z2)-R)2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos b cos c
y = r cos a cos b sin c + R cos b sin c
z = r cos a sin b + R sin b
w = r sin a
total edge length = 0
total surface area = 0
surcell volume = 8π2Rr2
bulk = 8π2Rr33-1
Unknown




Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


6a. (II)(II)
Duocylinder
6b. ((II)(II))
Tiger
7a. (III)I
Spherinder
7b. ((III)I)
Toraspherinder
8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
List of toratopes