Spheritorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
(update to STS)
m
Line 4: Line 4:
| elements=1, ?, ?, 0
| elements=1, ?, ?, 0
| genus=0
| genus=0
-
| ssc=[xyz], [x<sup>3</sup>] or {G4<sup>3</sup>}
+
| ssc2=T((2)2)
| extra={{STS Rotope
| extra={{STS Rotope
| attrib=pure
| attrib=pure
-
| notation=(211) ((x,y),z,w)
+
| notation=(211) ((xy)zw)
| index=36
| index=36
}}}}
}}}}

Revision as of 16:30, 28 October 2008


The toracubinder is a special case of a surcell of revolution where the base is a cylinder.

Equations

  • Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
  • All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus

Template:Rotope Nav