Spheritorus (EntityTopic, 11)
From Hi.gher. Space
(Difference between revisions)
(update to STS) |
m |
||
Line 4: | Line 4: | ||
| elements=1, ?, ?, 0 | | elements=1, ?, ?, 0 | ||
| genus=0 | | genus=0 | ||
- | | | + | | ssc2=T((2)2) |
| extra={{STS Rotope | | extra={{STS Rotope | ||
| attrib=pure | | attrib=pure | ||
- | | notation=(211) (( | + | | notation=(211) ((xy)zw) |
| index=36 | | index=36 | ||
}}}} | }}}} |
Revision as of 16:30, 28 October 2008
The toracubinder is a special case of a surcell of revolution where the base is a cylinder.
Equations
- Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
- All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
- The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
- The hypervolumes of a toracubinder are given by:
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
- The realmic cross-sections (n) of a toracubinder are:
Unknown
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |