Torisphere (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
(update to STS)
Line 1: Line 1:
-
{{Shape
+
{{STS Shape
-
| attrib=pure
+
| name=Toraspherinder
| name=Toraspherinder
| dim=4
| dim=4
| elements=1, 0, 0, 0
| elements=1, 0, 0, 0
| genus=1
| genus=1
-
| 20=SSC
 
| ssc=[(xyz)w]T
| ssc=[(xyz)w]T
-
| rns=(31) ((xyz)w)
+
| extra={{STS Rotope
-
| bracket=[xyz]
+
| attrib=pure
-
| rot_i=22
+
| notation=(31) ((xyz)w)
-
}}
+
| index=22
 +
}}}}
The toraspherinder is a special case of a [[surcell of revolution]] where the base is a [[sphere]].
The toraspherinder is a special case of a [[surcell of revolution]] where the base is a [[sphere]].

Revision as of 15:27, 14 March 2008


The toraspherinder is a special case of a surcell of revolution where the base is a sphere.

Equations

  • Variables:
r ⇒ minor radius of the toraspherinder
R ⇒ major radius of the toraspherinder
  • All points (x, y, z, w) that lie on the surcell of a toraspherinder will satisfy the following equation:(?)
(sqrt(x2+y2+z2)-R)2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos b cos c
y = r cos a cos b sin c + R cos b sin c
z = r cos a sin b + R sin b
w = r sin a
total edge length = 0
total surface area = 0
surcell volume = 8π2Rr2
bulk = 8π2Rr33-1
Unknown




Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus

Template:Rotope Nav