Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (rm "geometry")
m
Line 1: Line 1:
-
{{Shape|Ditorus|''No image''|4|2, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Torus|Q]]Q|((21)1) (((x,y),z),w)|N/A|N/A|N/A|42|N/A|N/A|pure}}
+
{{Shape
 +
| attrib=pure
 +
| name=Ditorus
 +
| dim=4
 +
| elements=2, 0, 0, 0
 +
| genus=1
 +
| 20=SSC
 +
| ssc=<nowiki>[[</nowiki>(xy)z]Tw]T
 +
| rns=((21)1) (((xy)z)w)
 +
| rot_i=42
 +
}}
The '''ditorus''' is unique as it is the only [[rotope]] in four dimensions or less that has a [[pocket]].
The '''ditorus''' is unique as it is the only [[rotope]] in four dimensions or less that has a [[pocket]].

Revision as of 19:38, 19 November 2007

Template:Shape

The ditorus is unique as it is the only rotope in four dimensions or less that has a pocket.

Equations

  • Variables:
R ⇒ major radius of the ditorus
r ⇒ middle radius of the ditorus
a ⇒ minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(sqrt((sqrt(x2 + y2) - a)2 + z2) - r)2 + w2 = R2
  • The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
Unknown


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus

Template:Rotope Nav