Duotrianglinder (EntityTopic, 16)

From Hi.gher. Space

(Difference between revisions)
(New page: {{STS Shape | dim=4 | elements=6, 15, 18, 9 | ssc2=G3<sup>2</sup> | extra={{STS Tapertope | order=2, 2 | notation=1<sup>1</sup>1<sup>1</sup> | index=29 }}}} {{Tetrashapes}} {{Tapertope Na...)
Line 1: Line 1:
 +
<[#ontology [kind topic] [cats Duoprism Tapertope]]>
 +
{{STS Shape
{{STS Shape
| dim=4
| dim=4
Line 8: Line 10:
| index=29
| index=29
}}}}
}}}}
 +
 +
The '''duotrianglinder''' is the 3,3-[[duoprism]]: the [[Cartesian product]] of two [[triangle]]s. It is also a trivial [[powertope]], the [[square]] of the triangle.
{{Tetrashapes}}
{{Tetrashapes}}
{{Tapertope Nav|28|29|30|1<sup>3</sup><br>Pentachoron|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|chora}}
{{Tapertope Nav|28|29|30|1<sup>3</sup><br>Pentachoron|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|chora}}
-
 
-
[[Category:Uniform prismachora]]
 

Revision as of 12:26, 23 November 2011



The duotrianglinder is the 3,3-duoprism: the Cartesian product of two triangles. It is also a trivial powertope, the square of the triangle.


Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus


28. 13
Pentachoron
29. 1111
Duotrianglinder
30. 5
Pentasphere
List of tapertopes