Hydrochoron (EntityTopic, 12)
From Hi.gher. Space
(Difference between revisions)
m (add) |
m (shortening) |
||
Line 1: | Line 1: | ||
{{Shape | {{Shape | ||
- | |||
- | |||
| dim=4 | | dim=4 | ||
| elements=600, 1200, 720, 120 | | elements=600, 1200, 720, 120 | ||
Line 7: | Line 5: | ||
| schlaefli={[[Triangle|3,]][[Tetrahedron|3,]]5} | | schlaefli={[[Triangle|3,]][[Tetrahedron|3,]]5} | ||
| vlayout=([[Triangle|3]][[Tetrahedron|<sup>3</sup>]])<sup>20</sup> | | vlayout=([[Triangle|3]][[Tetrahedron|<sup>3</sup>]])<sup>20</sup> | ||
- | | vfigure=[[ | + | | vfigure=[[ド]] |
| bowers=Ex | | bowers=Ex | ||
| kana=サコ | | kana=サコ | ||
- | | dual=[[ | + | | dual=[[ヘカ]] |
}} | }} | ||
Revision as of 22:35, 18 November 2007
Geometry
Equations
- Variables:
l ⇒ length of the edges of the hexacosichoron
- All points (x, y, z, w) that lie on the surcell of a hexacosichoron will satisfy the following equation:
Unknown
- The hypervolumes of a hexacosichoron are given by:
total edge length = 720l
total surface area = 300sqrt(3)l2
surcell volume = 50sqrt(2)l3
bulk = Unknown
- The realmic cross-sections (n) of a hexacosichoron are:
Unknown
Notable Tetrashapes | |
Regular: | pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron |
Powertopes: | triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate |
Circular: | glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder |
Torii: | tiger • torisphere • spheritorus • torinder • ditorus |