Torisphere (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m (rm "geometry")
Line 1: Line 1:
{{Shape|Toraspherinder|''No image''|4|1, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]]Q|(31) ((x,y,z),w)|N/A|N/A|N/A|22|N/A|N/A|pure}}
{{Shape|Toraspherinder|''No image''|4|1, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]]Q|(31) ((x,y,z),w)|N/A|N/A|N/A|22|N/A|N/A|pure}}
-
 
-
===Geometry===
 
The toraspherinder is a special case of a [[surcell of revolution]] where the base is a [[sphere]].
The toraspherinder is a special case of a [[surcell of revolution]] where the base is a [[sphere]].
-
===Equations===
+
== Equations ==
*Variables:
*Variables:
<blockquote>''r'' ⇒ minor radius of the toraspherinder <br>
<blockquote>''r'' ⇒ minor radius of the toraspherinder <br>

Revision as of 20:20, 22 September 2007

Template:Shape The toraspherinder is a special case of a surcell of revolution where the base is a sphere.

Equations

  • Variables:
r ⇒ minor radius of the toraspherinder
R ⇒ major radius of the toraspherinder
  • All points (x, y, z, w) that lie on the surcell of a toraspherinder will satisfy the following equation:(?)
(sqrt(x2+y2+z2)-R)2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos b cos c
y = r cos a cos b sin c + R cos b sin c
z = r cos a sin b + R sin b
w = r sin a
total edge length = 0
total surface area = 0
surcell volume = 8π2Rr2
bulk = 8π2Rr33-1
Unknown




Notable Tetrashapes
Regular: pyrochoronaerochorongeochoronxylochoronhydrochoroncosmochoron
Powertopes: triangular octagoltriatesquare octagoltriatehexagonal octagoltriateoctagonal octagoltriate
Circular: glomecubinderduocylinderspherindersphonecylindronediconeconinder
Torii: tigertorispherespheritorustorinderditorus

Template:Rotope Nav