Stauroperihedron (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m (Peritopes!)
Line 23: Line 23:
For a figure centred at the origin, with edge length 2, its 24 = 3×2<sup>3</sup> vertices can be given as all permutations of
For a figure centred at the origin, with edge length 2, its 24 = 3×2<sup>3</sup> vertices can be given as all permutations of
:〈±1, ±1, ±(1+√2)〉.
:〈±1, ±1, ±(1+√2)〉.
-
As such, the most obvious 4D analog is the [[runcinated 8-cell]].
+
As such, the most obvious 4D analog is the [[stauroperichoron]].
{{Trishapes}}
{{Trishapes}}

Revision as of 18:38, 24 August 2012


The cuboctahedral rectate (also known as the (small) rhombicuboctahedron, abbreviated here as COR) is a uniform polyhedron which can be seen as a 3-dimensional analog of the octagon. The other possible analog is the cubic truncate (CT). While the CT has the octagons on the surface of the shape, the COR has them embedded inside it. Thus when one is concerned with powertopes, the COR comprises three "long and thin" cuboids whereas the CT comprises three "wide and flat" cuboids.

For a figure centred at the origin, with edge length 2, its 24 = 3×23 vertices can be given as all permutations of

〈±1, ±1, ±(1+√2)〉.

As such, the most obvious 4D analog is the stauroperichoron.


Notable Trishapes
Regular: tetrahedroncubeoctahedrondodecahedronicosahedron
Direct truncates: tetrahedral truncatecubic truncateoctahedral truncatedodecahedral truncateicosahedral truncate
Mesotruncates: stauromesohedronstauroperihedronstauropantohedronrhodomesohedronrhodoperihedronrhodopantohedron
Snubs: snub staurohedronsnub rhodohedron
Curved: spheretoruscylinderconefrustumcrind