Cubic truncate (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 6: Line 6:
| ssc=[xyz]X3
| ssc=[xyz]X3
| ssc2=Ko3
| ssc2=Ko3
-
| extra={{STS Uniform polytope
+
| extra={{STS Polytope
 +
| flayout={{FLD|a3|line|a4|end}}
 +
| dual=[[Triakis octahedron]]
 +
}}{{STS Uniform polytope
| schlaefli=t{[[Square|4,]][[Cube|3]]}
| schlaefli=t{[[Square|4,]][[Cube|3]]}
| conway=t[[Cube|d]][[Octahedron|a]][[Tetrahedron|Y3]]
| conway=t[[Cube|d]][[Octahedron|a]][[Tetrahedron|Y3]]
Line 13: Line 16:
| bowers=Tic
| bowers=Tic
| kana=キュト
| kana=キュト
-
| dual=[[Triakis octahedron]]
 
}}}}
}}}}

Revision as of 11:07, 1 November 2009


The cubic truncate can be seen as a 3-dimensional analog of the octagon. This analogy is especially noticeable when studying powertopes: the octagon produces octagoltriates and the cubic truncate produces cubic truncatriates.


Notable Trishapes
Regular: tetrahedroncubeoctahedrondodecahedronicosahedron
Direct truncates: tetrahedral truncatecubic truncateoctahedral truncatedodecahedral truncateicosahedral truncate
Mesotruncates: stauromesohedronstauroperihedronstauropantohedronrhodomesohedronrhodoperihedronrhodopantohedron
Snubs: snub staurohedronsnub rhodohedron
Curved: spheretoruscylinderconefrustumcrind