Dodecahedron (EntityTopic, 12)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 7: | Line 7: | ||
| ssc={G5<sup>3</sup>} | | ssc={G5<sup>3</sup>} | ||
| ssc2=Ki1 | | ssc2=Ki1 | ||
- | | extra={{STS Uniform polytope | + | | extra={{STS Polytope |
+ | | flayout={{FLD|a5|end|e3}} | ||
+ | | petrie=V:(10,10,0) | ||
+ | | altern=[[Tetrahedron]] | ||
+ | | dual=[[Octahedron]] | ||
+ | }}{{STS Uniform polytope | ||
| wythoff=<nowiki>3 | 2 5 </nowiki> | | wythoff=<nowiki>3 | 2 5 </nowiki> | ||
| schlaefli={[[Pentagon|5,]]3} | | schlaefli={[[Pentagon|5,]]3} |
Revision as of 11:01, 1 November 2009
Equations
- Assumption: Dodecahedron is centered at the origin.
- Variables:
l ⇒ length of edges of the dodecahedron
- The hypervolumes of a dodecahedron are given by:
total edge length = 30l
surface area = 15l2tan(3π10-1)
volume = 5l3(tan(3π10-1))2(tan(sin-1(2sin(π5-1))-1))2-1
- The planar cross-sections (n) of a dodecahedron are:
Unknown
Notable Trishapes | |
Regular: | tetrahedron • cube • octahedron • dodecahedron • icosahedron |
Direct truncates: | tetrahedral truncate • cubic truncate • octahedral truncate • dodecahedral truncate • icosahedral truncate |
Mesotruncates: | stauromesohedron • stauroperihedron • stauropantohedron • rhodomesohedron • rhodoperihedron • rhodopantohedron |
Snubs: | snub staurohedron • snub rhodohedron |
Curved: | sphere • torus • cylinder • cone • frustum • crind |