List of tapertopes (Meta, 5)
From Hi.gher. Space
(Difference between revisions)
m (ontology) |
(renamed "Cyltriandyinder" for more consistency (if the prism of the Duotrianglinder is the Duotrianglindyinder, then the prism of the Cyltrianglinder should be the Cyltrianglindyinder)) |
||
Line 279: | Line 279: | ||
<td>T3xG3</td> | <td>T3xG3</td> | ||
</tr><tr class='row2'> | </tr><tr class='row2'> | ||
- | <td class='key'>[[ | + | <td class='key'>[[Cyltrianglindyinder]]</td> |
<td>N/A</td> | <td>N/A</td> | ||
<td>43</td> | <td>43</td> |
Revision as of 03:58, 16 April 2022
This is a list of tapertopes in dimensions from zero to five.
Name | Toratopic index | Tapertopic index | Tapertopic notation | SSC2 |
---|---|---|---|---|
0D tapertopes (total 1) | ||||
Point | N/A | 0 | 0 | M0 |
1D tapertopes (total 1) | ||||
Digon | N/A | 1 | 1 | M1 |
2D tapertopes (total 3) | ||||
Circle | 1b | 2 | 2 | T2 |
Square | 1a | 3 | 11 | G4 |
Triangle | N/A | 4 | 11 | G3 |
3D tapertopes (total 7) | ||||
Sphere | 2b | 5 | 3 | T3 |
Cylinder | 3a | 6 | 21 | +T2 |
Cube | 2a | 7 | 111 | Ko1 |
Cone | N/A | 8 | 21 | &T2 |
Square pyramid | N/A | 9 | [11]1 | &G4 |
Triangular prism | N/A | 10 | 111 | +G3 |
Tetrahedron | N/A | 11 | 12 | Kt1 |
4D tapertopes (total 18) | ||||
Glome | 4b | 12 | 4 | T4 |
Spherinder | 7a | 13 | 31 | +T3 |
Duocylinder | 6a | 14 | 22 | T2xT2 |
Cubinder | 5a | 15 | 211 | ++T2 |
Tesseract | 4a | 16 | 1111 | Ke1 |
Sphone | N/A | 17 | 31 | &T3 |
Cylindrone | N/A | 18 | [21]1 | &+T2 |
Cubic pyramid | N/A | 19 | [111]1 | &Ko1 |
Cyltrianglinder | N/A | 20 | 211 | T2xG3 |
Triangular diprism | N/A | 21 | 1111 | ++G3 |
Dicone | N/A | 22 | 22 | &&T2 |
Square dipyramid | N/A | 23 | [11]2 | &&G4 |
Coninder | N/A | 24 | 121 | +&T2 |
Square pyramidal prism | N/A | 25 | 1[11]1 | +&G4 |
Tetrahedral prism | N/A | 26 | 112 | +Kt1 |
Triangular prismic pyramid | N/A | 27 | [111]1 | &+G3 |
Pentachoron | N/A | 28 | 13 | Kp1 |
Duotrianglinder | N/A | 29 | 1111 | G3xG3 |
5D tapertopes (total 45) | ||||
Pentasphere | 9b | 30 | 5 | T5 |
Glominder | 16a | 31 | 41 | +T4 |
Cylspherinder | 14a | 32 | 32 | T3xT2 |
Cubspherinder | 12a | 33 | 311 | ++T3 |
Duocyldyinder | 11a | 34 | 221 | T2xT2xM1 |
Tesserinder | 10a | 35 | 2111 | +++T2 |
Penteract | 9a | 36 | 11111 | K5c1 |
Glone | N/A | 37 | 41 | &T4 |
Spherindrone | N/A | 38 | [31]1 | &+T3 |
Duocylindrone | N/A | 39 | [22]1 | &[T2xT2] |
Cubindrone | N/A | 40 | [211]1 | &++T2 |
Tesseric pyramid | N/A | 41 | [1111]1 | &Ke1 |
Sphentrianglinder | N/A | 42 | 311 | T3xG3 |
Cyltrianglindyinder | N/A | 43 | 2111 | T2xM1xG3 |
Triangular triprism | N/A | 44 | 11111 | +++G3 |
Disphone | N/A | 45 | 32 | &&T3 |
Dicylindrone | N/A | 46 | [21]2 | &&+T2 |
Cubic dipyramid | N/A | 47 | [111]2 | &&Ko1 |
Cylconinder | N/A | 48 | 221 | T2x&T2 |
Cylhemoctahedrinder | N/A | 49 | 2[11]1 | T2x&G4 |
Cyltetrahedrinder | N/A | 50 | 212 | T2xKt1 |
Conic diprism | N/A | 51 | 1121 | ++&T2 |
Square pyramidal diprism | N/A | 52 | 11[11]1 | ++&G4 |
Tetrahedral diprism | N/A | 53 | 1112 | ++Kt1 |
Cyltrianglindrone | N/A | 54 | [211]1 | &[T2xG3] |
Triangular diprismic pyramid | N/A | 55 | [1111]1 | &++G3 |
Tricone | N/A | 56 | 23 | &&&T2 |
Square tripyramid | N/A | 57 | [11]3 | &&&G4 |
Sphoninder | N/A | 58 | 131 | +&T3 |
Cylindronic prism | N/A | 59 | 1[21]1 | +&+T2 |
Cubic pyramidal prism | N/A | 60 | 1[111]1 | +&Ko1 |
Diconic prism | N/A | 61 | 122 | +&&T2 |
Square dipyramidal prism | N/A | 62 | 1[11]2 | +&&G4 |
Triangular prismic pyramidal prism | N/A | 63 | 1[111]1 | +&+G3 |
Pentachoric prism | N/A | 64 | 113 | +Kp1 |
Conindric pyramid | N/A | 65 | [121]1 | &+&T2 |
Square pyramidal prismic pyramid | N/A | 66 | [1[11]1]1 | &+&G4 |
Tetrahedral prismic pyramid | N/A | 67 | [112]1 | &+Kt1 |
Duotrianglindyinder | N/A | 68 | 11111 | M1xG3xG3 |
Triangular prismic dipyramid | N/A | 69 | [111]2 | &&+G3 |
Hexateron | N/A | 70 | 14 | K1x1 |
Contrianglinder | N/A | 71 | 2111 | &T2xG3 |
Hemoctahedrotrianglinder | N/A | 72 | [11]111 | &G4xG3 |
Tetrahedrotrianglinder | N/A | 73 | 1211 | Kt1xG3 |
Duotrianglindric pyramid | N/A | 74 | [1111]1 | &[G3xG3] |