List of rotopes (no ontology)
From Hi.gher. Space
(Difference between revisions)
m (updated names of some obscure polychora) |
m (toraspherinder -> torisphere, toracubinder -> spheritorus) |
||
(9 intermediate revisions not shown) | |||
Line 11: | Line 11: | ||
|valign="top" style="background-color:#bbbbff; text-align:center;" colspan="6"|'''0D rotopes''' | |valign="top" style="background-color:#bbbbff; text-align:center;" colspan="6"|'''0D rotopes''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[ | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Point]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''0''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''0''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''''Empty string''''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''''Empty string''''' | ||
Line 20: | Line 20: | ||
|valign="top" style="background-color:#bbbbff; text-align:center;" colspan="6"|'''1D rotopes''' | |valign="top" style="background-color:#bbbbff; text-align:center;" colspan="6"|'''1D rotopes''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Line | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Line segment]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''1''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''1''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''x''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''x''' | ||
Line 138: | Line 138: | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''ELLL''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''ELLL''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Square | + | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Square pyramidal prism]]''' |
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''17''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''17''' | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''xy<sup>z</sup>w''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''xy<sup>z</sup>w''' | ||
Line 152: | Line 152: | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''EETT''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''EETT''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Square | + | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Square pyramidal torus]]''' |
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''19''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''19''' | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''(xy<sup>z</sup>w)''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''(xy<sup>z</sup>w)''' | ||
Line 173: | Line 173: | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ELLT''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ELLT''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[ | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Torisphere]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''22''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''22''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''((xyz)w)''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''((xyz)w)''' | ||
Line 187: | Line 187: | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ETEE''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ETEE''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Triangular | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Triangular prismic pyramid]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''24''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''24''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''x<sup>y</sup>z<sup>w</sup>''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''x<sup>y</sup>z<sup>w</sup>''' | ||
Line 194: | Line 194: | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''ETET''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''ETET''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Triangular | + | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Triangular prismic torus]]''' |
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''25''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''25''' | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''(x<sup>y</sup>zw)''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''(x<sup>y</sup>zw)''' | ||
Line 243: | Line 243: | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ETQQ''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ETQQ''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|''' | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Cyltrianglinder]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''32''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''32''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''x<sup>y</sup>(zw)''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''x<sup>y</sup>(zw)''' | ||
Line 250: | Line 250: | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''''Unknown''''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''''Unknown''''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|''' | + | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Cyltrianglintigroid]]''' |
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''33''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''33''' | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''(x<sup>y</sup>(zw))''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''(x<sup>y</sup>(zw))''' | ||
Line 271: | Line 271: | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ELET''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ELET''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[ | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Spheritorus]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''36''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''36''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''((xy)zw)''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''((xy)zw)''' | ||
Line 292: | Line 292: | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''ELTT''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''ELTT''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[ | + | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;"|'''[[Conic torus]]''' |
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''39''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''39''' | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''((xy)<sup>z</sup>w)''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''((xy)<sup>z</sup>w)''' | ||
Line 313: | Line 313: | ||
|valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ELQT''' | |valign="top" width="16%" style="background-color:#ddddff; text-align:center;"|'''ELQT''' | ||
|- | |- | ||
- | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[ | + | |valign="top" width="20%" style="background-color:#ddddff; text-align:center;"|'''[[Ditorus]]''' |
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''42''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''42''' | ||
|valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''(((xy)z)w)''' | |valign="top" width="16%" style="background-color:#eeeeff; text-align:center;"|'''(((xy)z)w)''' | ||
Line 336: | Line 336: | ||
[[Category:Rotopes|$]] | [[Category:Rotopes|$]] | ||
- | [[Category:Lists|Rotopes]] | + | [[Category:Lists of shapes|Rotopes]] |
Latest revision as of 19:50, 2 February 2014
This is a list of rotopes in dimensions from zero to four.
Name | Rotopic index | Group notation | Digit notation | Product notation | CSG notation |
0D rotopes | |||||
Point | 0 | Empty string | Empty string | 0 | Empty string |
1D rotopes | |||||
Line segment | 1 | x | 1 | 1 | E |
2D rotopes | |||||
Square | 2 | xy | 11 | 1x1 | EE |
Triangle | 3 | xy | 11 | 1~0 | ET |
Circle | 4 | (xy) | 2 | 2 | EL |
3D rotopes | |||||
Cube | 5 | xyz | 111 | 1x1x1 | EEE |
Square pyramid | 6 | xyz | 111 | (1x1)~0 | EET |
Sphere | 7 | (xyz) | 3 | 3 | ELL |
Triangular prism | 8 | xyz | 111 | (1~0)x1 | ETE |
Tetrahedron | 9 | xyz | 12 | 1~0~0 | ETT |
Triangular torus | 10 | (xyz) | (111) | 2#(1~0) | ETQ |
Cylinder | 11 | (xy)z | 21 | 2x1 | ELE |
Cone | 12 | (xy)z | 21 | 2~0 | ELT |
Torus | 13 | ((xy)z) | (21) | 2#2 | ELQ |
4D rotopes | |||||
Tesseract | 14 | xyzw | 1111 | 1x1x1x1 | EEEE |
Cubic pyramid | 15 | xyzw | 1111 | (1x1x1)~0 | EEET |
Glome | 16 | (xyzw) | 4 | 4 | ELLL |
Square pyramidal prism | 17 | xyzw | 1111 | ((1x1)~0)x1 | EETE |
Square dipyramid | 18 | xyzw | 112 | (1x1)~0~0 | EETT |
Square pyramidal torus | 19 | (xyzw) | (1111) | ((1x1)~0)#2 | EETQ |
Spherinder | 20 | (xyz)w | 31 | 3x1 | ELLE |
Sphone | 21 | (xyz)w | 31 | 3~0 | ELLT |
Torisphere | 22 | ((xyz)w) | (31) | 3#2 | ELLQ |
Triangular diprism | 23 | xyzw | 1111 | (1~0)x1x1 | ETEE |
Triangular prismic pyramid | 24 | xyzw | 1111 | ((1~0) x1)~0 | ETET |
Triangular prismic torus | 25 | (xyzw) | (1111) | 2#((1~0) x1) | ETEQ |
Tetrahedral prism | 26 | xyzw | 121 | (1~0~0) x1 | ETTE |
Pentachoron | 27 | xyzw | 13 | 1~0~0~0 | ETTT |
Tetrahedral torus | 28 | (xyzw) | (121) | 2#(1~0~0) | ETTQ |
Triangular toric prism | 29 | (xyz)w | (111)1 | 2#(1~0) x1 | ETQE |
Triangular toric pyramid | 30 | (xyz)w | (111)1 | (2#(1~0)) ~0 | ETQT |
Triangular ditorus | 31 | ((xyz)w) | ((111)1) | 2#(2#(1~0)) | ETQQ |
Cyltrianglinder | 32 | xy(zw) | 112 | Unknown | Unknown |
Cyltrianglintigroid | 33 | (xy(zw)) | (112) | Unknown | Unknown |
Cubinder | 34 | (xy)zw | 211 | 2x1x1 | ELEE |
Cylindrical pyramid | 35 | (xy)zw | 211 | (2x1)~0 | ELET |
Spheritorus | 36 | ((xy)zw) | (211) | 2#3 | ELEQ |
Coninder | 37 | (xy)zw | 211 | (2~0)x1 | ELTE |
Dicone | 38 | (xy)zw | 22 | 2~0~0 | ELTT |
Conic torus | 39 | ((xy)zw) | (211) | 2#(2~0) | ELTQ |
Torinder | 40 | ((xy)z)w | (21)1 | (2#2)x1 | ELQE |
Toric pyramid | 41 | ((xy)z)w | (21)1 | (2#2)~0 | ELQT |
Ditorus | 42 | (((xy)z)w) | ((21)1) | (2#2)#2 | ELQQ |
Duocylinder | 43 | (xy)(zw) | 22 | 2x2 | EL*EL |
Tiger | 44 | ((xy)(zw)) | (22) | (2x2)#2 | Unknown |