Geopeton (EntityTopic, 20)

From Hi.gher. Space

(Difference between revisions)
m (rm "geometry")
m (K6.4 upgrade: img -> embed)
 
(21 intermediate revisions not shown)
Line 1: Line 1:
-
{{Shape|Hexacube|''No image''|6|12, 60, 160, 240, 192, 64|0|{[[Square|4,]][[Cube|3,]][[Tesseract|3,]][[Pentacube|3,]]3}|N/A|[[Line (object)|E]][[Square|E]][[Cube|E]][[Tesseract|E]][[Pentacube|E]]E|111111 xyzwφσ|[[Hexateron]], edge √5|N/A|[[Tricositetrapeton]]|156|[xyzwφσ]|194|pure|''Unknown''|1|((([[Square|4]][[Cube|<sup>3</sup>]])[[Tesseract|<sup>3</sup>]])[[Pentacube|<sup>3</sup>]])<sup>3</sup>}}
+
<[#ontology [kind topic] [cats 6D Hypercube]]>
-
A '''hexacube''', also known as a [[regular]] ''dodecapeton'' is a special case of the [[prism]] where the base is a [[pentacube]].
+
{{STS Shape
 +
| image=<[#embed [hash 5N7NJKG9P1CPTV2X2D3STA0YSZ] [width 180]]><br>[[Petrie polygon]]
 +
| dim=6
 +
| elements=12, 60, 160, 240, 192, 64
 +
| genus=0
 +
| ssc=[xyzwφσ]
 +
| ssc2=K6c1
 +
| pv_square=1
 +
| extra={{STS Tapertope
 +
| order=6, 0
 +
| notation=111111
 +
| index=84
 +
}}{{STS Toratope
 +
| expand=[[Hexeract|111111]]
 +
| notation=IIIIII
 +
| index=21a
 +
}}{{STS Bracketope
 +
| index=194
 +
}}{{STS Polytope
 +
| altern=[[Demihexeract]]
 +
| dual=[[Aeropeton]]
 +
}}{{STS Uniform polytope
 +
| schlaefli={[[Square|4,]][[Cube|3,]][[Tesseract|3,]][[Pentacube|3,]]3}
 +
| vfigure=[[Pyroteron]], edge √5
 +
| vlayout=((([[Square|4]][[Cube|<sup>3</sup>]])[[Tesseract|<sup>3</sup>]])[[Pentacube|<sup>3</sup>]])<sup>3</sup>
 +
}}}}
 +
 
 +
The '''geopeton''', also known as the '''hexeract''', the '''hexacube''' and the [[regular]] '''dodecapeton''' is the six-dimensional [[hypercube]]. It is a special case of the [[prism]] where the base is a [[geoteron]]. It is also the [[square]] of the [[cube]].
== Equations ==
== Equations ==
*Variables:
*Variables:
-
<blockquote>''l'' ⇒ length of the edges of the hexacube</blockquote>
+
<blockquote>''l'' ⇒ length of the edges of the hexeract</blockquote>
-
*All points (''x'', ''y'', ''z'', ''w'', ''φ'', ''σ'') that lie on the [[surpeton]] of a hexacube will satisfy the following equation:
+
*All points (''x'', ''y'', ''z'', ''w'', ''φ'', ''σ'') that lie on the [[surpeton]] of a hexeract will satisfy the following equation:
<blockquote>''Unknown''</blockquote>
<blockquote>''Unknown''</blockquote>
-
*The [[hypervolume]]s of a hexacube are given by:
+
*The [[hypervolume]]s of a hexeract are given by:
<blockquote>total edge length = 192''l''<br>
<blockquote>total edge length = 192''l''<br>
total surface area = 240''l''<sup>2</sup><br>
total surface area = 240''l''<sup>2</sup><br>
Line 17: Line 44:
hexavolume = ''l''<sup>6</sup></blockquote>
hexavolume = ''l''<sup>6</sup></blockquote>
-
*The [[pentaplanar]] [[cross-section]]s (''n'') of a hexacube are:
+
*The [[pentaplanar]] [[cross-section]]s (''n'') of a hexeract are:
<blockquote>[!x, !y, !z, !w, !φ, !σ] ⇒ pentacube of side (''l'')</blockquote>
<blockquote>[!x, !y, !z, !w, !φ, !σ] ⇒ pentacube of side (''l'')</blockquote>
== Net ==
== Net ==
-
The net of a hexacube is a pentacube surrounded by ten more pentacubes, with one more pentacube added to one of these.
+
The net of a hexeract is a penteract surrounded by ten more penteracts, with one more penteract added to one of these.
 +
{{Hypercubes|6}}
{{Hexashapes}}
{{Hexashapes}}
-
{{Rotope Nav|155|156|157|(((II)(II))I)<br>Tigric torus|IIIIII<br>Hexacube|IIIII'<br>Pentacubic pyramid|peta}}
+
{{Tapertope Nav|83|84|85|21111<br>Penterinder|111111<br>Hexeract|5<sup>1</sup><br>Pentaspheric cone|peta}}
-
{{Bracketope Nav|193|194|195|(<xy><(zw)φ>)<br>''Unknown shape''|[xyzwφσ]<br>Hexacube|[<xy>zwφσ]<br>Narrow hexacube|peta}}
+
{{Toratope Nav A|20|21|22|(((II)I)I)I<br>Ditorinder|((((II)I)I)I)<br>Tritorus|IIIIII<br>Hexeract|(IIIIII)<br>Hexasphere|(II)IIII<br>Penterinder|((II)III)<br>Torapenterinder|peta}}
-
[[Category:Regular polypeta]]
+
{{Bracketope Nav|193|194|195|(<xy><(zw)φ>)<br>''Unknown shape''|[xyzwφσ]<br>Hexeract|[<xy>zwφσ]<br>Narrow hexeract|peta}}

Latest revision as of 20:44, 11 February 2014


The geopeton, also known as the hexeract, the hexacube and the regular dodecapeton is the six-dimensional hypercube. It is a special case of the prism where the base is a geoteron. It is also the square of the cube.

Equations

  • Variables:
l ⇒ length of the edges of the hexeract
  • All points (x, y, z, w, φ, σ) that lie on the surpeton of a hexeract will satisfy the following equation:
Unknown
total edge length = 192l
total surface area = 240l2
total surcell volume = 160l3
surteron bulk = 60l4
surpeton pentavolume = 12l5
hexavolume = l6
[!x, !y, !z, !w, !φ, !σ] ⇒ pentacube of side (l)

Net

The net of a hexeract is a penteract surrounded by ten more penteracts, with one more penteract added to one of these.


Hypercubes
pointdigonsquarecubegeochorongeoterongeopeton


Notable Hexashapes
  pyropetonaeropetongeopetonsquare cubic truncatriate


83. 21111
Penterinder
84. 111111
Hexeract
85. 51
Pentaspheric cone
List of tapertopes


20a. (((II)I)I)I
Ditorinder
20b. ((((II)I)I)I)
Tritorus
21a. IIIIII
Hexeract
21b. (IIIIII)
Hexasphere
22a. (II)IIII
Penterinder
22b. ((II)III)
Torapenterinder
List of toratopes


193. (<xy><(zw)φ>)
Unknown shape
194. [xyzwφσ]
Hexeract
195. [<xy>zwφσ]
Narrow hexeract
List of bracketopes