Circle (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m |
(update bracketope nav) |
||
Line 19: | Line 19: | ||
| index=1b | | index=1b | ||
}}{{STS Bracketope | }}{{STS Bracketope | ||
- | | index= | + | | index=3 |
}}}} | }}}} | ||
Line 53: | Line 53: | ||
{{Tapertope Nav|1|2|3|1<br>Digon|2<br>Circle|11<br>Square|gons}} | {{Tapertope Nav|1|2|3|1<br>Digon|2<br>Circle|11<br>Square|gons}} | ||
{{Toratope Nav B||1|2|||II<br>Square|(II)<br>Circle|III<br>Cube|(III)<br>Sphere|gons}} | {{Toratope Nav B||1|2|||II<br>Square|(II)<br>Circle|III<br>Cube|(III)<br>Sphere|gons}} | ||
- | {{Bracketope Nav|3|4| | + | {{Bracketope Nav|2|3|4|[II]<br>Square|(II)<br>Circle|[III]<br>Cube|gons}} |
Revision as of 17:10, 18 November 2011
A circle refers to the surface of a perfectly symmetrical planar object.
Equations
- Variables:
r ⇒ radius of circle
- All points (x, y) that lie on the surface of a circle will satisfy the following equation:
x2 + y2 = r2
- The hypervolumes of a circle are given by:
total edge length = 2πr
area = πr2
- The linear cross-sections (n) of a circle are:
[!x,!y] ⇒ line of length (rcos(πn/2))
Homology groups
Any unstated homology group is the trivial group 0.
- 0-frame
- N/A
- 1-frame (circle)
- H0 = ℤ, H1 = ℤ
- 2-frame (disc)
- H0 = ℤ
Use
Circular faces are found in these trishapes on FGwiki:
Notable Dishapes | |
Flat: | triangle • square • pentagon • hexagon • octagon • decagon |
Curved: | circle |
1. 1 Digon | 2. 2 Circle | 3. 11 Square |
List of tapertopes |
a. | b. | 1a. II Square | 1b. (II) Circle | 2a. III Cube | 2b. (III) Sphere |
List of toratopes |
2. [II] Square | 3. (II) Circle | 4. [III] Cube |
List of bracketopes |