Manifold (ConceptTopic, 4)
From Hi.gher. Space
m (fix images) |
(Redacted nonsense.) |
||
Line 1: | Line 1: | ||
- | A '''manifold''' is a | + | A '''manifold''' is a topological object which locally resembles Euclidean space. Manifolds may or may not have boundaries and may or may not be orientable. |
== Nullar and linear manifolds == | == Nullar and linear manifolds == | ||
- | + | The manifolds in 0D and 1D are relatively trivial, but are included for completeness: | |
- | + | ||
{| | {| | ||
- | !style="background-color: #EEE;"| | + | !style="background-color: #EEE;"|nullar |
- | !style="background-color: #EEE;" | + | !style="background-color: #EEE;" colspan="2"|linear |
- | + | ||
|- | |- | ||
|width="33%" align="center"|[[Point]] | |width="33%" align="center"|[[Point]] | ||
Line 17: | Line 15: | ||
|align="center"|<[#img [hash 76ARJ0KWJPGETCCXSNWQ813V9M]]> | |align="center"|<[#img [hash 76ARJ0KWJPGETCCXSNWQ813V9M]]> | ||
|align="center"|<[#img [hash KBTKCV8P4Q8ETDE2WSJGTZKFRF]]> | |align="center"|<[#img [hash KBTKCV8P4Q8ETDE2WSJGTZKFRF]]> | ||
- | |||
- | |||
- | |||
- | |||
|} | |} | ||
- | + | The colored boundaries (for the circle, the two red points) must be identified to form the desired manifold. | |
- | These are the best known manifolds. There are | + | == Planar manifolds == |
+ | |||
+ | These are the best known manifolds. There are seven "interesting" ones, shown below: | ||
{| | {| | ||
- | !style="background-color: #EEE;"|Group | + | !style="background-color: #EEE;"|Group 0 |
- | !colspan="2" style="background-color: #EEE;"|Group 1 | + | !colspan="2" style="background-color: #EEE;"|Group 1 |
- | !colspan="4" style="background-color: #EEE;"|Group | + | !colspan="4" style="background-color: #EEE;"|Group 2 |
- | + | ||
|- | |- | ||
- | |width="12%" align="center"|[[ | + | |width="12%" align="center"|[[Disc]] |
|width="12%" align="center"|[[Hose]] (uncapped [[cylinder]]) | |width="12%" align="center"|[[Hose]] (uncapped [[cylinder]]) | ||
|width="12%" align="center"|[[Möbius strip]] | |width="12%" align="center"|[[Möbius strip]] | ||
|width="12%" align="center"|[[Torus]] | |width="12%" align="center"|[[Torus]] | ||
- | |||
|width="12%" align="center"|[[Klein bottle]] | |width="12%" align="center"|[[Klein bottle]] | ||
|width="12%" align="center"|[[Real projective plane]] | |width="12%" align="center"|[[Real projective plane]] | ||
Line 46: | Line 40: | ||
|align="center"|<[#img [hash GXSMG22779KTTFH16Q81TQXF36]]> | |align="center"|<[#img [hash GXSMG22779KTTFH16Q81TQXF36]]> | ||
|align="center"|<[#img [hash EK4R8ABYEP6YCVZKM4QMJKC3S5]]> | |align="center"|<[#img [hash EK4R8ABYEP6YCVZKM4QMJKC3S5]]> | ||
- | |||
|align="center"|<[#img [hash ZC0PJNBY5BZZEHD8Q6A3TZHBYX]]> | |align="center"|<[#img [hash ZC0PJNBY5BZZEHD8Q6A3TZHBYX]]> | ||
|align="center"|<[#img [hash QY2NW8J9RCC9CK6GBPF3AZ01D0]]> | |align="center"|<[#img [hash QY2NW8J9RCC9CK6GBPF3AZ01D0]]> | ||
|align="center"|<[#img [hash 62XZYY54QA05YXTE878CGPAPJ5]]> | |align="center"|<[#img [hash 62XZYY54QA05YXTE878CGPAPJ5]]> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
|} | |} | ||
- | To construct, | + | To construct, connect up the colored edges so that the colors and arrowheads match. |
- | + | There are infinitely many more such manifolds in group 2, one each of the orientable and non-orientable varieties for each possible genus. Only the possibilities for genus 0 and 1 are shown above. | |
== Cubic manifolds == | == Cubic manifolds == | ||
- | + | Some examples are shown in the following table. | |
{| | {| | ||
Line 77: | Line 61: | ||
!style="background-color: #EEE;"|Group 1-2 | !style="background-color: #EEE;"|Group 1-2 | ||
!style="background-color: #EEE;" colspan="2"|Group 0-3 | !style="background-color: #EEE;" colspan="2"|Group 0-3 | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
|- | |- | ||
|align="center" width="12%"|[[Cube]] | |align="center" width="12%"|[[Cube]] | ||
Line 119: | Line 79: | ||
|align="center"|<[#img [hash R2GEAJMABF01MCPMD04GPYAZV5]]> | |align="center"|<[#img [hash R2GEAJMABF01MCPMD04GPYAZV5]]> | ||
|align="center"|<[#img [hash 83VKP6HCJ7350SJHQ3KY07HWA5]]> | |align="center"|<[#img [hash 83VKP6HCJ7350SJHQ3KY07HWA5]]> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
|- | |- | ||
|align="center"| | |align="center"| | ||
Line 135: | Line 86: | ||
|align="center"| | |align="center"| | ||
|align="center"| | |align="center"| | ||
- | |align="center"| | + | |align="center"| |
|align="center"| | |align="center"| | ||
|- | |- | ||
Line 144: | Line 95: | ||
|align="center"| | |align="center"| | ||
|align="center"| | |align="center"| | ||
- | |||
|align="center"| | |align="center"| | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
|align="center"| | |align="center"| | ||
|- | |- | ||
Line 169: | Line 111: | ||
|align="center"| | |align="center"| | ||
|align="center"|<[#img [hash 4HNZC40T26JRPN1DNB67WVWP9X]]> | |align="center"|<[#img [hash 4HNZC40T26JRPN1DNB67WVWP9X]]> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
|align="center"| | |align="center"| | ||
|align="center"| | |align="center"| | ||
Line 185: | Line 118: | ||
Construction is similar to that of the square manifolds: fold up each cubic net and attach the red, blue and green pairs of facets to each other in that order, making sure the triangles line up. | Construction is similar to that of the square manifolds: fold up each cubic net and attach the red, blue and green pairs of facets to each other in that order, making sure the triangles line up. | ||
- | |||
- | |||
== Tesseric manifolds == | == Tesseric manifolds == | ||
Line 236: | Line 167: | ||
<[#img [hash KV05CMH3C2Q7M8761HHSGX1GM6]]> | <[#img [hash KV05CMH3C2Q7M8761HHSGX1GM6]]> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
== See also == | == See also == |
Revision as of 21:57, 25 March 2011
A manifold is a topological object which locally resembles Euclidean space. Manifolds may or may not have boundaries and may or may not be orientable.
Nullar and linear manifolds
The manifolds in 0D and 1D are relatively trivial, but are included for completeness:
nullar | linear | |
---|---|---|
Point | Line segment | Circle |
ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead |
The colored boundaries (for the circle, the two red points) must be identified to form the desired manifold.
Planar manifolds
These are the best known manifolds. There are seven "interesting" ones, shown below:
Group 0 | Group 1 | Group 2 | ||||
---|---|---|---|---|---|---|
Disc | Hose (uncapped cylinder) | Möbius strip | Torus | Klein bottle | Real projective plane | Sphere |
ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead |
To construct, connect up the colored edges so that the colors and arrowheads match.
There are infinitely many more such manifolds in group 2, one each of the orientable and non-orientable varieties for each possible genus. Only the possibilities for genus 0 and 1 are shown above.
Cubic manifolds
Some examples are shown in the following table.
Group 0-0 | Group 1-0 | Group 2-0 | Group 3-0 | Group 0-2 | Group 1-2 | Group 0-3 | |
---|---|---|---|---|---|---|---|
Cube | Dihose | Toric hose | Ditorus | Spherical hose | Glome | Toraspherinder | Toraspherindric bottle |
ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead |
Möbial hose | Real projective planar hose | Toric bottle | |||||
ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | |||||
Real projective realm | |||||||
ExPar: [#img] is obsolete, use [#embed] instead |
Construction is similar to that of the square manifolds: fold up each cubic net and attach the red, blue and green pairs of facets to each other in that order, making sure the triangles line up.
Tesseric manifolds
Here are the 4D p-toric q-hoses and p-spheric q-hoses along with the tesseract and möbial dihose:
Group 0-0 | Group 1-0 | Group 2-0 | Group 3-0 | Group 4-0 | Group 0-2 | Group 0-3 | Group 0-4 | |
---|---|---|---|---|---|---|---|---|
Tesseract | Möbial dihose | Trihose | Toric dihose | Ditoric hose | Tritorus | Spherical dihose | Glomic hose | Pentasphere |
ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead | ExPar: [#img] is obsolete, use [#embed] instead |
I | 1 | 0 | 00 | 000 | 0000 | SS | SSS | SSSS |
To construct, first fold up the nets for each cube and attach the cubes into the net of a tesseract as shown below, making sure to preserve orientation. Solidify the tesseract net and fold that up too. Then, attach the red, blue, green and yellow pairs of facets to each other in that order, lining up the symbols.
ExPar: [#img] is obsolete, use [#embed] instead