# (dual of square biantiprismatic ring) (no ontology, empty)

### From Hi.gher. Space

This page is empty, but exists for ontology purposes.

## Incidence matrix

Dual: square biantiprismatic ring

# | TXID | Va | Vb | Vc | Vd | Ea | Eb | Ec | Ed | Ee | Ef | 3a | 3b | 4a | 3c | C1a | C2a | Type | Name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

0 | Va | = point | ; | ||||||||||||||||

1 | Vb | = point | ; | ||||||||||||||||

2 | Vc | = point | ; | ||||||||||||||||

3 | Vd | = point | ; | ||||||||||||||||

4 | Ea | 0 | 0 | 0 | 2 | = digon | ; | ||||||||||||

5 | Eb | 1 | 0 | 0 | 1 | = digon | ; | ||||||||||||

6 | Ec | 1 | 1 | 0 | 0 | = digon | ; | ||||||||||||

7 | Ed | 0 | 1 | 0 | 1 | = digon | ; | ||||||||||||

8 | Ee | 0 | 1 | 1 | 0 | = digon | ; | ||||||||||||

9 | Ef | 0 | 0 | 1 | 1 | = digon | ; | ||||||||||||

10 | 3a | 1 | 0 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | = triangle | ; | ||||||

11 | 3b | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | = triangle | ; | ||||||

12 | 4a | 1 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | = square | ; | ||||||

13 | 3c | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | = triangle | ; | ||||||

14 | C1a | 2 | 1 | 0 | 2 | 1 | 4 | 2 | 2 | 0 | 0 | 2 | 4 | 0 | 0 | = triangular bipyramid | ; | ||

15 | C2a | 1 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 2 | 1 | 0 | 2 | 1 | 2 | = square pyramid | ; | ||

16 | H4.1a | 4 | 4 | 1 | 2 | 1 | 8 | 8 | 8 | 4 | 2 | 4 | 16 | 4 | 8 | 4 | 8 | = (dual of square biantiprismatic ring) |
; |

## Usage as facets

*This polytope does not currently appear as facets in any higher-dimensional polytopes in the database.*