Pyroteron (EntityTopic, 17)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 7: Line 7:
| ssc2=K5x1
| ssc2=K5x1
| extra={{STS Rotope
| extra={{STS Rotope
-
| attrib=pure
+
| order=1, 4
-
| notation=1<sup>4</sup> x<sup>yzwφ</sup>
+
| notation=1<sup>4</sup>
-
| index=89
+
| index=70
}}{{STS Uniform polytope
}}{{STS Uniform polytope
| schlaefli={[[Triangle|3,]][[Tetrahedron|3,]][[Pentachoron|3,]]3}
| schlaefli={[[Triangle|3,]][[Tetrahedron|3,]][[Pentachoron|3,]]3}
Line 34: Line 34:
{{Simplices}}
{{Simplices}}
{{Pentashapes}}
{{Pentashapes}}
-
{{Rotope Nav|88|89|90|<nowiki>I'''I</nowiki><br>Pentachoric prism|<nowiki>I''''</nowiki><br>Hexateron|<nowiki>(I'''I)</nowiki><br>Pentachoric torus|tera}}
+
{{Tapertope Nav|69|70|71|[11<sup>1</sup>]<sup>2</sup><br>Triangular prismic dipyramid|1<sup>4</sup><br>Hexateron|2<sup>1</sup>1<sup>1</sup><br>Contrianglinder|tera}}
[[Category:Regular polytera]]
[[Category:Regular polytera]]

Revision as of 15:35, 26 November 2009


The hexateron is the 5-dimensional simplex. It is a special case of the pyramid where the base is a pentachoron.

Equations

  • Variables:
l ⇒ length of the edges of the hexateron
  • All points (x, y, z, w, φ) that lie on the surface of a hexateron will satisfy the following equation:
Unknown
Unknown
Unknown


Simplices
triangletetrahedronpyrochoronpyroteronpyropeton


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


69. [111]2
Triangular prismic dipyramid
70. 14
Hexateron
71. 2111
Contrianglinder
List of tapertopes