Pyroteron (EntityTopic, 17)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 7: | Line 7: | ||
| ssc2=K5x1 | | ssc2=K5x1 | ||
| extra={{STS Rotope | | extra={{STS Rotope | ||
- | | | + | | order=1, 4 |
- | | notation=1<sup>4 | + | | notation=1<sup>4</sup> |
- | | index= | + | | index=70 |
}}{{STS Uniform polytope | }}{{STS Uniform polytope | ||
| schlaefli={[[Triangle|3,]][[Tetrahedron|3,]][[Pentachoron|3,]]3} | | schlaefli={[[Triangle|3,]][[Tetrahedron|3,]][[Pentachoron|3,]]3} | ||
Line 34: | Line 34: | ||
{{Simplices}} | {{Simplices}} | ||
{{Pentashapes}} | {{Pentashapes}} | ||
- | {{ | + | {{Tapertope Nav|69|70|71|[11<sup>1</sup>]<sup>2</sup><br>Triangular prismic dipyramid|1<sup>4</sup><br>Hexateron|2<sup>1</sup>1<sup>1</sup><br>Contrianglinder|tera}} |
[[Category:Regular polytera]] | [[Category:Regular polytera]] |
Revision as of 15:35, 26 November 2009
The hexateron is the 5-dimensional simplex. It is a special case of the pyramid where the base is a pentachoron.
Equations
- Variables:
l ⇒ length of the edges of the hexateron
- All points (x, y, z, w, φ) that lie on the surface of a hexateron will satisfy the following equation:
Unknown
- The hypervolumes of a hexateron are given by:
Unknown
- The flunic cross-sections (n) of a hexateron are:
Unknown
Simplices |
triangle • tetrahedron • pyrochoron • pyroteron • pyropeton |
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
69. [111]2 Triangular prismic dipyramid | 70. 14 Hexateron | 71. 2111 Contrianglinder |
List of tapertopes |