Tesserinder (EntityTopic, 13)
From Hi.gher. Space
A tesserinder is a special case of the prism where the base is a cubinder.
Equations
- Variables:
r ⇒ radius of the tesserinder
a ⇒ height of the tesserinder along z-axis
b ⇒ tridth of the tesserinder along w-axis
c ⇒ pentalength of the tesserinder along φ-axis
- All points (x, y, z, w, φ) that lie on the surteron of a tesserinder will satisfy the following equations:
x2 + y2 = r2
abs(z) ≤ a
abs(w) ≤ b
abs(φ) ≤ c
-- or --
x2 + y2 < r2
abs(z) = a
abs(w) = b
abs(φ) = c
- The hypervolumes of a tesserinder are given by:
total edge length = Unknown
total surface area = Unknown
surcell volume = Unknown
surteron bulk = Unknown
pentavolume = πr2abc
- The flunic cross-sections (n) of a tesserinder are:
Unknown
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
34. 221 Duocyldyinder | 35. 2111 Tesserinder | 36. 11111 Penteract |
List of tapertopes |
9a. IIIII Penteract | 9b. (IIIII) Pentasphere | 10a. (II)III Tesserinder | 10b. ((II)III) Toratesserinder | 11a. (II)(II)I Duocyldyinder | 11b. ((II)(II)I) Toraduocyldyinder |
List of toratopes |
33. (IIIII) Pentasphere | 34. [(II)III] Tesserinder | 35. <(II)III> Tribicone |
List of bracketopes |