Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 30: Line 30:
<blockquote>''Unknown''</blockquote>
<blockquote>''Unknown''</blockquote>
{{Polychora}}
{{Polychora}}
-
{{Rotope Nav|41|42|43|((II)I)'<br>Toric pyramid|(((II)I)I)<br>Ditorus|(II)(II)<br>Duocylinder}}
+
{{Rotope Nav|41|42|43|((II)I)'<br>Toric pyramid|(((II)I)I)<br>Ditorus|(II)(II)<br>Duocylinder|chora}}

Revision as of 07:19, 20 June 2007

Template:Shape

Geometry

The ditorus is unique as it is the only rotope in four dimensions or less that has a pocket.

Equations

  • Variables:
R ⇒ major radius of the ditorus
r ⇒ middle radius of the ditorus
a ⇒ minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(sqrt((sqrt(x2 + y2) - a)2 + z2) - r)2 + w2 = R2
  • The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
Unknown

Template:Polychora Template:Rotope Nav