List of convex regular-faced polyhedra (Meta, 13)
From Hi.gher. Space
(Difference between revisions)
(fix + add) |
(add) |
||
Line 64: | Line 64: | ||
<td>14</td><td>36</td><td>24</td> | <td>14</td><td>36</td><td>24</td> | ||
<td>[[Triakis octahedron]]</td><td><tt>B--</tt></td><td>''Unknown''</td> | <td>[[Triakis octahedron]]</td><td><tt>B--</tt></td><td>''Unknown''</td> | ||
+ | </tr><tr class='row2'> | ||
+ | <td class='key'>9</td> | ||
+ | <td>[[Octahedral truncate]]</td><td><tt>BS-</tt></td><td>Ko6</td> | ||
+ | <td>14</td><td>36</td><td>24</td> | ||
+ | <td>[[Tetrakis hexahedron]]</td><td><tt>B--</tt></td><td>''Unknown''</td> | ||
+ | </tr><tr class='row1'> | ||
+ | <td class='key'>10</td> | ||
+ | <td>[[Cuboctahedral rectate]]</td><td><tt>B--</tt></td><td>Ko5</td> | ||
+ | <td>26</td><td>48</td><td>24</td> | ||
+ | <td>[[Deltoidal icositetrahedron]]</td><td><tt>---</tt></td><td>''Unknown''</td> | ||
+ | </tr><tr class='row2'> | ||
+ | <td class='key'>11</td> | ||
+ | <td>[[Cuboctahedral truncate]]</td><td><tt>BSZ</tt></td><td>Ko7</td> | ||
+ | <td>26</td><td>72</td><td>48</td> | ||
+ | <td>[[Disdyakis dodecahedron]]</td><td><tt>B--</tt></td><td>''Unknown''</td> | ||
+ | </tr><tr class='row1'> | ||
+ | <td class='key'>12</td> | ||
+ | <td>[[Cubic snub]]</td><td><tt>---</tt></td><td>Ko0</td> | ||
+ | <td>38</td><td>60</td><td>24</td> | ||
+ | <td>[[Pentagonal icositetrahedron]]</td><td><tt>---</tt></td><td>''Unknown''</td> | ||
</tr><tr> | </tr><tr> | ||
<td class='cat' colspan='10'>Utility prisms (total 9)</td> | <td class='cat' colspan='10'>Utility prisms (total 9)</td> |
Revision as of 12:08, 5 December 2010
Three classes used in the table below:
- B = Brick: point (x, y, z) implies point (±x, ±y, ±z)
- S = Simple: exactly three faces meet at each vertex
- Z = Zonotope: each face has point symmetry
Index | Parent | Elements | Dual | ||||||
---|---|---|---|---|---|---|---|---|---|
Name | Classes | SSC2 | Faces | Edges | Vertices | Name | Classes | SSC2 | |
Platonic solids (total 5) | |||||||||
1 | Tetrahedron | -S- | Kt1 | 4 | 6 | 4 | Self-dual | ||
2 | Cube | BSZ | Ko1 | 6 | 12 | 8 | 3. Octahedron (below) | ||
3 | Octahedron | B-- | Ko4 | 8 | 12 | 6 | 2. Cube (above) | ||
4 | Dodecahedron | BS- | Ki1 | 12 | 30 | 20 | 5. Icosahedron (below) | ||
5 | Icosahedron | B-- | Ki4 | 20 | 30 | 12 | 4. Dodecahedron (above) | ||
Archimedean solids (total 13) | |||||||||
6 | Tetrahedral truncate | -S- | Kt3 | 8 | 18 | 12 | Triakis tetrahedron | --- | Unknown |
7 | Cuboctahedron | B-- | Ko2 | 14 | 24 | 12 | Rhombic dodecahedron | B-Z | Unknown |
8 | Cubic truncate | BS- | Ko3 | 14 | 36 | 24 | Triakis octahedron | B-- | Unknown |
9 | Octahedral truncate | BS- | Ko6 | 14 | 36 | 24 | Tetrakis hexahedron | B-- | Unknown |
10 | Cuboctahedral rectate | B-- | Ko5 | 26 | 48 | 24 | Deltoidal icositetrahedron | --- | Unknown |
11 | Cuboctahedral truncate | BSZ | Ko7 | 26 | 72 | 48 | Disdyakis dodecahedron | B-- | Unknown |
12 | Cubic snub | --- | Ko0 | 38 | 60 | 24 | Pentagonal icositetrahedron | --- | Unknown |
Utility prisms (total 9) | |||||||||
Johnson solids (total 92) |