Cubspherinder (EntityTopic, 13)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 22: | Line 22: | ||
{{Pentashapes}} | {{Pentashapes}} | ||
{{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|tera}} | {{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|tera}} | ||
- | {{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder| tera}} | + | {{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|tera}} |
{{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)wφ]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}} | {{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)wφ]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}} |
Revision as of 14:17, 26 November 2009
A cubspherinder is the Cartesian product of a sphere and a square. It is also the prism with a spherinder as the base, so it may also be called a spherical diprism.
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
32. 32 Cylspherinder | 33. 311 Cubspherinder | 34. 221 Duocyldyinder |
List of tapertopes |
11a. (II)(II)I Duocyldyinder | 11b. ((II)(II)I) Toraduocyldyinder | 12a. (III)II Cubspherinder | 12b. ((III)II) Toracubspherinder | 13a. ((II)I)II Cubtorinder | 13b. (((II)I)II) Toracubtorinder |
List of toratopes |
57. [(<xy>z)wφ] Narrow crindal diprism | 58. [(xyz)wφ] Cubspherinder | 59. [<[xyz]w>φ] Cubic bipyramidal prism |
List of bracketopes |