Tesserinder (EntityTopic, 13)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 6: | Line 6: | ||
| ssc=[(xy)zwφ] | | ssc=[(xy)zwφ] | ||
| ssc2=+++T2 | | ssc2=+++T2 | ||
- | | extra={{STS | + | | extra={{STS Tapertope |
- | | | + | | order=4, 0 |
- | | notation=2111 ( | + | | notation=2111 |
- | | index= | + | | index=35 |
+ | }}{{STS Toratope | ||
+ | | holeseq=[1] | ||
+ | | notation=(II)III | ||
+ | | index=10a | ||
}}{{STS Bracketope | }}{{STS Bracketope | ||
| index=52 | | index=52 | ||
Line 46: | Line 50: | ||
{{Pentashapes}} | {{Pentashapes}} | ||
- | {{ | + | {{Tapertope Nav|34|35|36|221<br>Duocyldyinder|2111<br>Tesserinder|11111<br>Penteract|chora}} |
+ | {{Toratope Nav A|9|10|11|IIIII<br>Penteract|(IIIII)<br>Pentasphere|(II)III<br>Tesserinder|((II)III)<br>Toratesserinder|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|chora}} | ||
{{Bracketope Nav|51|52|53|[<xy>zwφ]<br>Narrow pentacube|[(xy)zwφ]<br>Tesserinder|[<[xy]z>wφ]<br>Wide octahedral diprism|tera}} | {{Bracketope Nav|51|52|53|[<xy>zwφ]<br>Narrow pentacube|[(xy)zwφ]<br>Tesserinder|[<[xy]z>wφ]<br>Wide octahedral diprism|tera}} |
Revision as of 20:06, 25 November 2009
A tesserinder is a special case of the prism where the base is a cubinder.
Equations
- Variables:
r ⇒ radius of the tesserinder
a ⇒ height of the tesserinder along z-axis
b ⇒ tridth of the tesserinder along w-axis
c ⇒ pentalength of the tesserinder along φ-axis
- All points (x, y, z, w, φ) that lie on the surteron of a tesserinder will satisfy the following equations:
x2 + y2 = r2
abs(z) ≤ a
abs(w) ≤ b
abs(φ) ≤ c
-- or --
x2 + y2 < r2
abs(z) = a
abs(w) = b
abs(φ) = c
- The hypervolumes of a tesserinder are given by:
total edge length = Unknown
total surface area = Unknown
surcell volume = Unknown
surteron bulk = Unknown
pentavolume = πr2abc
- The flunic cross-sections (n) of a tesserinder are:
Unknown
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
34. 221 Duocyldyinder | 35. 2111 Tesserinder | 36. 11111 Penteract |
List of tapertopes |
9a. IIIII Penteract | 9b. (IIIII) Pentasphere | 10a. (II)III Tesserinder | 10b. ((II)III) Toratesserinder | 11a. (II)(II)I Duocyldyinder | 11b. ((II)(II)I) Toraduocyldyinder |
List of toratopes |
51. [<xy>zwφ] Narrow pentacube | 52. [(xy)zwφ] Tesserinder | 53. [<[xy]z>wφ] Wide octahedral diprism |
List of bracketopes |