Spheritorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (rm spam)
m (upgrade)
Line 1: Line 1:
-
{{Shape|Toracubinder|''No image''|4|1, ?, ?, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]]Q|(211) ((x,y),z,w)|N/A|N/A|N/A}}
+
{{Shape|Toracubinder|''No image''|4|1, ?, ?, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]]Q|(211) ((x,y),z,w)|N/A|N/A|N/A|36}}
===Geometry===
===Geometry===
Line 27: Line 27:
*The [[realmic]] [[cross-section]]s (''n'') of a toracubinder are:
*The [[realmic]] [[cross-section]]s (''n'') of a toracubinder are:
<blockquote>''Unknown''</blockquote>
<blockquote>''Unknown''</blockquote>
-
<br clear="all"><br>
 
{{Polychora}}
{{Polychora}}
-
{{Rotopes}}
+
{{Rotope Nav|35|36|37|(II)I'<br>Cylindrical pyramid|((II)II)<br>Toracubinder|(II)'I<br>Coninder}}

Revision as of 12:57, 17 June 2007

Template:Shape

Geometry

The toracubinder is a special case of a surcell of revolution where the base is a cylinder.

Equations

  • Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
  • All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
Unknown

Template:Polychora Template:Rotope Nav