Geopeton (EntityTopic, 20)
From Hi.gher. Space
(Difference between revisions)
(upgrade) |
|||
Line 1: | Line 1: | ||
- | {{Shape| | + | {{Shape |
- | A ''' | + | | dim=6 |
+ | | elements=12, 60, 160, 240, 192, 64 | ||
+ | | genus=0 | ||
+ | | schlaefli={[[Square|4,]][[Cube|3,]][[Tesseract|3,]][[Pentacube|3,]]3} | ||
+ | | 20=SSC | ||
+ | | ssc=[xyzwφσ] | ||
+ | | rns=111111 xyzwφσ | ||
+ | | rot_i=156 | ||
+ | | bracket=[xyzwφσ] | ||
+ | | bra_i=194 | ||
+ | | attrib=pure | ||
+ | | pv_square=1 | ||
+ | | vfigure=[[Hexateron]], edge √5 | ||
+ | | vlayout=((([[Square|4]][[Cube|<sup>3</sup>]])[[Tesseract|<sup>3</sup>]])[[Pentacube|<sup>3</sup>]])<sup>3</sup> | ||
+ | | dual=[[Tricositetrapeton]] | ||
+ | }} | ||
+ | |||
+ | A '''hexeract''', also known as a ''hexacube'' or a [[regular]] ''dodecapeton'' is a special case of the [[prism]] where the base is a [[penteract]]. | ||
== Equations == | == Equations == | ||
*Variables: | *Variables: | ||
- | <blockquote>''l'' ⇒ length of the edges of the | + | <blockquote>''l'' ⇒ length of the edges of the hexeract</blockquote> |
- | *All points (''x'', ''y'', ''z'', ''w'', ''φ'', ''σ'') that lie on the [[surpeton]] of a | + | *All points (''x'', ''y'', ''z'', ''w'', ''φ'', ''σ'') that lie on the [[surpeton]] of a hexeract will satisfy the following equation: |
<blockquote>''Unknown''</blockquote> | <blockquote>''Unknown''</blockquote> | ||
- | *The [[hypervolume]]s of a | + | *The [[hypervolume]]s of a hexeract are given by: |
<blockquote>total edge length = 192''l''<br> | <blockquote>total edge length = 192''l''<br> | ||
total surface area = 240''l''<sup>2</sup><br> | total surface area = 240''l''<sup>2</sup><br> | ||
Line 17: | Line 34: | ||
hexavolume = ''l''<sup>6</sup></blockquote> | hexavolume = ''l''<sup>6</sup></blockquote> | ||
- | *The [[pentaplanar]] [[cross-section]]s (''n'') of a | + | *The [[pentaplanar]] [[cross-section]]s (''n'') of a hexeract are: |
<blockquote>[!x, !y, !z, !w, !φ, !σ] ⇒ pentacube of side (''l'')</blockquote> | <blockquote>[!x, !y, !z, !w, !φ, !σ] ⇒ pentacube of side (''l'')</blockquote> | ||
== Net == | == Net == | ||
- | The net of a | + | The net of a hexeract is a penteract surrounded by ten more penteracts, with one more penteract added to one of these. |
{{Hexashapes}} | {{Hexashapes}} | ||
- | {{Rotope Nav|155|156|157|(((II)(II))I)<br>Tigric torus|IIIIII<br> | + | {{Rotope Nav|155|156|157|(((II)(II))I)<br>Tigric torus|IIIIII<br>Hexeract|IIIII'<br>Penteractic pyramid|peta}} |
- | {{Bracketope Nav|193|194|195|(<xy><(zw)φ>)<br>''Unknown shape''|[xyzwφσ]<br> | + | {{Bracketope Nav|193|194|195|(<xy><(zw)φ>)<br>''Unknown shape''|[xyzwφσ]<br>Hexeract|[<xy>zwφσ]<br>Narrow hexeract|peta}} |
[[Category:Regular polypeta]] | [[Category:Regular polypeta]] |
Revision as of 22:43, 18 November 2007
A hexeract, also known as a hexacube or a regular dodecapeton is a special case of the prism where the base is a penteract.
Equations
- Variables:
l ⇒ length of the edges of the hexeract
- All points (x, y, z, w, φ, σ) that lie on the surpeton of a hexeract will satisfy the following equation:
Unknown
- The hypervolumes of a hexeract are given by:
total edge length = 192l
total surface area = 240l2
total surcell volume = 160l3
surteron bulk = 60l4
surpeton pentavolume = 12l5
hexavolume = l6
- The pentaplanar cross-sections (n) of a hexeract are:
[!x, !y, !z, !w, !φ, !σ] ⇒ pentacube of side (l)
Net
The net of a hexeract is a penteract surrounded by ten more penteracts, with one more penteract added to one of these.
Notable Hexashapes | |
pyropeton • aeropeton • geopeton • square cubic truncatriate |
193. (<xy><(zw)φ>) Unknown shape | 194. [xyzwφσ] Hexeract | 195. [<xy>zwφσ] Narrow hexeract |
List of bracketopes |