Cylspherinder (EntityTopic, 13)

From Hi.gher. Space

(Difference between revisions)
m
m (add)
Line 1: Line 1:
-
{{Shape|Cylspherinder|''No image''|5|?, ?, ?, ?, ?|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]]*EL|32 (xyz)(wφ)|N/A|N/A|N/A|74|N/A|N/A|strange}}
+
{{Shape|Cylspherinder|''No image''|5|?, ?, ?, ?, ?|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]]*EL|32 (xyz)(wφ)|N/A|N/A|N/A|74|[(xy)(zwφ)]|133|strange}}
== Geometry ==
== Geometry ==
Line 17: Line 17:
{{Polytera}}
{{Polytera}}
{{Rotope Nav|73|74|75|(((III)I)I)<br>Toraspherindric torus|(III)(II)<br>Cylspherinder|((III)(II))<br>Cylspherintigroid}}
{{Rotope Nav|73|74|75|(((III)I)I)<br>Toraspherindric torus|(III)(II)<br>Cylspherinder|((III)(II))<br>Cylspherintigroid}}
 +
{{Bracketope Nav|132|133|134|[(xy)(<zw>φ)]<br>''Unknown shape''|[(xy)(zwφ)]<br>Cylspherinder|<[xy][zwφ]><br>''Unknown shape''}}

Revision as of 17:22, 19 June 2007

Template:Shape

Geometry

A cylspherinder is the Cartesian product of a sphere and a circle.

Equations

  • Variables:
a ⇒ radius of the sphere
b ⇒ radius of the circle
Unknown

Rolling

The cylspherinder will always roll when placed on a surface. If it rests on one of its tera, it can cover the space of a line. If it rests on its other teron, it can cover the space of a plane.

Template:Polytera Template:Rotope Nav

132. [(xy)(<zw>φ)]
Unknown shape
133. [(xy)(zwφ)]
Cylspherinder
134. ExPar: unexpected closing bracket
Unknown shape
List of bracketopes