Cylspherinder (EntityTopic, 13)
From Hi.gher. Space
(Difference between revisions)
m (typo) |
m (elements) |
||
Line 2: | Line 2: | ||
| name=Cylspherinder | | name=Cylspherinder | ||
| dim=5 | | dim=5 | ||
- | | elements= | + | | elements=2, 1, 0, 0, 0 |
| genus=0 | | genus=0 | ||
| ssc=[(xy)(zwφ)] | | ssc=[(xy)(zwφ)] |
Revision as of 13:35, 24 November 2013
A cylspherinder is the Cartesian product of a sphere and a circle. It is the expanded rotatope of the toraspherinder and toracubinder.
Equations
- Variables:
a ⇒ radius of the sphere
b ⇒ radius of the circle
- The hypervolumes of a cylspherinder are given by:
Unknown
Rolling
The cylspherinder will always roll when placed on a surface. If it rests on one of its tera, it can cover the space of a line. If it rests on its other teron, it can cover the space of a plane.
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
31. 41 Glominder | 32. 32 Cylspherinder | 33. 311 Cubspherinder |
List of tapertopes |
13a. ((II)I)II Cubtorinder | 13b. (((II)I)II) Toracubtorinder | 14a. (III)(II) Cylspherinder | 14b. ((III)(II)) Cylspherintigroid | 15a. ((II)I)(II) Cyltorinder | 15b. (((II)I)(II)) Cyltorintigroid |
List of toratopes |
?. ? ? | ?. [(II)(III)] Cylspherinder | ?. ? ? |
List of bracketopes |