Ditorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (Tritorus moved to Ditorus: moving to more systematic name)
m (upgrade)
Line 1: Line 1:
-
{{Shape|Tetratorus|''No image''|4|2, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Torus|Q]]Q|((21)1) (((x,y),z),w)|N/A|N/A|N/A}}
+
{{Shape|Ditorus|''No image''|4|2, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Torus|Q]]Q|((21)1) (((x,y),z),w)|N/A|N/A|N/A|42}}
===Geometry===
===Geometry===
-
The '''tritorus''' is unique as it is the only [[rotope]] in four dimensions or less that has a [[pocket]].
+
The '''ditorus''' is unique as it is the only [[rotope]] in four dimensions or less that has a [[pocket]].
===Equations===
===Equations===
*Variables:
*Variables:
-
<blockquote>''R'' ⇒ major radius of the tritorus<br>
+
<blockquote>''R'' ⇒ major radius of the ditorus<br>
-
''r'' ⇒ middle radius of the tritorus<br>
+
''r'' ⇒ middle radius of the ditorus<br>
-
''a'' ⇒ minor radius of the tritorus</blockquote>
+
''a'' ⇒ minor radius of the ditorus</blockquote>
-
*All points (''x'', ''y'', ''z'', ''w'') that lie on the [[surcell]] of a tritorus will satisfy the following equation:  
+
*All points (''x'', ''y'', ''z'', ''w'') that lie on the [[surcell]] of a ditorus will satisfy the following equation:
<blockquote>
<blockquote>
(sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - r)^2 + w^2 = R^2
(sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - r)^2 + w^2 = R^2
Line 22: Line 22:
w = a sin th<sub>3</sub> </blockquote>
w = a sin th<sub>3</sub> </blockquote>
-
*The [[hypervolume]]s of a tritorus are given by:
+
*The [[hypervolume]]s of a ditorus are given by:
<blockquote>total surface area = 0<br>
<blockquote>total surface area = 0<br>
surcell volume = 8π<sup>3</sup>Rra<br>
surcell volume = 8π<sup>3</sup>Rra<br>
bulk = 4π<sup>3</sup>a<sup>2</sup>rR</blockquote>
bulk = 4π<sup>3</sup>a<sup>2</sup>rR</blockquote>
-
*The [[realmic]] [[cross-section]]s (''n'') of a tritorus are:
+
*The [[realmic]] [[cross-section]]s (''n'') of a ditorus are:
<blockquote>''Unknown''</blockquote>
<blockquote>''Unknown''</blockquote>
-
<br clear="all"><br>
 
{{Polychora}}
{{Polychora}}
-
{{Rotopes}}
+
{{Rotope Nav|41|42|43|((II)I)'<br>Toric pyramid|(((II)I)I)<br>Ditorus|(II)(II)<br>Duocylinder}}

Revision as of 13:04, 17 June 2007

Template:Shape

Geometry

The ditorus is unique as it is the only rotope in four dimensions or less that has a pocket.

Equations

  • Variables:
R ⇒ major radius of the ditorus
r ⇒ middle radius of the ditorus
a ⇒ minor radius of the ditorus
  • All points (x, y, z, w) that lie on the surcell of a ditorus will satisfy the following equation:
(sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - r)^2 + w^2 = R^2
  • The parametric equations are:
x = (R + (r + a cos th3) cos th2) cos th1
y = (R + (r + a cos th3) cos th2) sin th1
z = (r + a cos th3) sin th2
w = a sin th3
total surface area = 0
surcell volume = 8π3Rra
bulk = 4π3a2rR
Unknown

Template:Polychora Template:Rotope Nav