Pentasphere (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 6: Line 6:
| ssc=(xyzwφ)
| ssc=(xyzwφ)
| ssc2=T5
| ssc2=T5
-
| extra={{STS Rotope
+
| extra={{STS Tapertope
-
| attrib=pure
+
| order=1, 0
-
| notation=5 (xyzwφ)
+
| notation=5
-
| index=47
+
| index=30
 +
}}{{STS Toratope
 +
| holeseq=[0, 0, 0, 1]
 +
| notation=(IIIII)
 +
| index=9b
}}{{STS Bracketope
}}{{STS Bracketope
| index=148
| index=148
Line 34: Line 38:
{{Pentashapes}}
{{Pentashapes}}
-
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism|tera}}
+
{{Tapertope Nav|29|30|31|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|41<br>Glominder|chora}}
 +
{{Toratope Nav B|8|9|10|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|(II)III<br>Tesserinder|((II)III)<br>Toratesserinder|chora}}
{{Bracketope Nav|147|148|149|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|([<xy><zw>]φ)<br>Narrow tesseric crind|tera}}
{{Bracketope Nav|147|148|149|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|([<xy><zw>]φ)<br>Narrow tesseric crind|tera}}

Revision as of 20:00, 25 November 2009


Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


29. 1111
Duotrianglinder
30. 5
Pentasphere
31. 41
Glominder
List of tapertopes


8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
10a. (II)III
Tesserinder
10b. ((II)III)
Toratesserinder
List of toratopes


147. (<xy>zwφ)
Narrow tricrind
148. (xyzwφ)
Pentasphere
149. ([<xy><zw>]φ)
Narrow tesseric crind
List of bracketopes