Pentasphere (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m (fix)
m (add)
Line 20: Line 20:
*The [[realmic]] [[cross-section]]s (''n'') of a pentasphere are:
*The [[realmic]] [[cross-section]]s (''n'') of a pentasphere are:
<blockquote>[!x,!y,!z,!w,!φ] ⇒ [[glome]] of radius (''r''cos(π''n''/2))</blockquote>
<blockquote>[!x,!y,!z,!w,!φ] ⇒ [[glome]] of radius (''r''cos(π''n''/2))</blockquote>
-
<br clear="all"><br>
+
 
{{Polytera}}
{{Polytera}}
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism}}
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism}}
 +
{{Bracketope Nav|111|112|113|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|(<xy><zw>φ)<br>Doubly-narrow tricrind}}

Revision as of 17:15, 19 June 2007

Template:Shape

Geometry

Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))

Template:Polytera Template:Rotope Nav

111. (<xy>zwφ)
Narrow tricrind
112. (xyzwφ)
Pentasphere
113. (<xy><zw>φ)
Doubly-narrow tricrind
List of bracketopes