Pentasphere (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m (fix) |
m (add) |
||
Line 20: | Line 20: | ||
*The [[realmic]] [[cross-section]]s (''n'') of a pentasphere are: | *The [[realmic]] [[cross-section]]s (''n'') of a pentasphere are: | ||
<blockquote>[!x,!y,!z,!w,!φ] ⇒ [[glome]] of radius (''r''cos(π''n''/2))</blockquote> | <blockquote>[!x,!y,!z,!w,!φ] ⇒ [[glome]] of radius (''r''cos(π''n''/2))</blockquote> | ||
- | + | ||
{{Polytera}} | {{Polytera}} | ||
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism}} | {{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism}} | ||
+ | {{Bracketope Nav|111|112|113|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|(<xy><zw>φ)<br>Doubly-narrow tricrind}} |
Revision as of 17:15, 19 June 2007
Geometry
Equations
- Variables:
r ⇒ radius of the pentasphere
- All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
- The hypervolumes of a pentasphere are given by:
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
- The realmic cross-sections (n) of a pentasphere are:
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))
Template:Polytera
Template:Rotope Nav
111. (<xy>zwφ) Narrow tricrind | 112. (xyzwφ) Pentasphere | 113. (<xy><zw>φ) Doubly-narrow tricrind |
List of bracketopes |