Rhodomesohedral rotunda (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
(created page) |
(add coordinates) |
||
Line 5: | Line 5: | ||
}} | }} | ||
The '''icosidodecahedral rotunda''' is a [[CRF polychoron]], [[icosidodecahedron]] || enlarged [[dodecahedron]] || [[truncated dodecahedron]]. | The '''icosidodecahedral rotunda''' is a [[CRF polychoron]], [[icosidodecahedron]] || enlarged [[dodecahedron]] || [[truncated dodecahedron]]. | ||
+ | |||
+ | == Coordinates == | ||
+ | <(3+sqrt(5))/2, 0, 0, ±1> | ||
+ | <(3+sqrt(5))/2, 0, ±1, 0> | ||
+ | <(3+sqrt(5))/2, ±1, 0, 0> | ||
+ | |||
+ | <(3+sqrt(5))/2, ±(-1+sqrt(5))/4, ±1/2, ±(1+sqrt(5))/4> | ||
+ | <(3+sqrt(5))/2, ±1/2, ±(1+sqrt(5))/4, ±(-1+sqrt(5))/4> | ||
+ | <(3+sqrt(5))/2, ±(1+sqrt(5))/4, ±(-1+sqrt(5))/4, ±1/2> | ||
+ | |||
+ | <(2+sqrt(5))/2, 0, ±(-1+sqrt(5))/4, ±(5+sqrt(5))/4> | ||
+ | <(2+sqrt(5))/2, ±(-1+sqrt(5))/4, ±(5+sqrt(5))/4, 0> | ||
+ | <(2+sqrt(5))/2, ±(5+sqrt(5))/4, 0, ±(-1+sqrt(5))/4> | ||
+ | |||
+ | <(2+sqrt(5))/2, ±(-1+sqrt(5))/4, ±(1+sqrt(5))/4, ±(1+sqrt(5))/2> | ||
+ | <(2+sqrt(5))/2, ±(1+sqrt(5))/4, ±(1+sqrt(5))/2, ±(-1+sqrt(5))/4> | ||
+ | <(2+sqrt(5))/2, ±(1+sqrt(5))/2, ±(-1+sqrt(5))/4, ±(1+sqrt(5))/4> | ||
+ | |||
+ | <(2+sqrt(5))/2, ±(1+sqrt(5))/4, ±1, ±(3+sqrt(5))/4> | ||
+ | <(2+sqrt(5))/2, ±1, ±(3+sqrt(5))/4, ±(1+sqrt(5))/4> | ||
+ | <(2+sqrt(5))/2, ±(3+sqrt(5))/4, ±(1+sqrt(5))/4, ±1> | ||
+ | |||
+ | <(3+3*sqrt(5))/4, 0, ±1/2, ±(3+sqrt(5))/4> | ||
+ | <(3+3*sqrt(5))/4, ±1/2, ±(3+sqrt(5))/4, 0> | ||
+ | <(3+3*sqrt(5))/4, ±(3+sqrt(5))/4, 0, ±1/2> | ||
+ | |||
+ | <(3+3*sqrt(5))/4, ±(1+sqrt(5))/4, ±(1+sqrt(5))/4, ±(1+sqrt(5))/4> | ||
== Additional images == | == Additional images == |
Revision as of 00:18, 15 March 2014
The icosidodecahedral rotunda is a CRF polychoron, icosidodecahedron || enlarged dodecahedron || truncated dodecahedron.
Coordinates
<(3+sqrt(5))/2, 0, 0, ±1> <(3+sqrt(5))/2, 0, ±1, 0> <(3+sqrt(5))/2, ±1, 0, 0> <(3+sqrt(5))/2, ±(-1+sqrt(5))/4, ±1/2, ±(1+sqrt(5))/4> <(3+sqrt(5))/2, ±1/2, ±(1+sqrt(5))/4, ±(-1+sqrt(5))/4> <(3+sqrt(5))/2, ±(1+sqrt(5))/4, ±(-1+sqrt(5))/4, ±1/2> <(2+sqrt(5))/2, 0, ±(-1+sqrt(5))/4, ±(5+sqrt(5))/4> <(2+sqrt(5))/2, ±(-1+sqrt(5))/4, ±(5+sqrt(5))/4, 0> <(2+sqrt(5))/2, ±(5+sqrt(5))/4, 0, ±(-1+sqrt(5))/4> <(2+sqrt(5))/2, ±(-1+sqrt(5))/4, ±(1+sqrt(5))/4, ±(1+sqrt(5))/2> <(2+sqrt(5))/2, ±(1+sqrt(5))/4, ±(1+sqrt(5))/2, ±(-1+sqrt(5))/4> <(2+sqrt(5))/2, ±(1+sqrt(5))/2, ±(-1+sqrt(5))/4, ±(1+sqrt(5))/4> <(2+sqrt(5))/2, ±(1+sqrt(5))/4, ±1, ±(3+sqrt(5))/4> <(2+sqrt(5))/2, ±1, ±(3+sqrt(5))/4, ±(1+sqrt(5))/4> <(2+sqrt(5))/2, ±(3+sqrt(5))/4, ±(1+sqrt(5))/4, ±1> <(3+3*sqrt(5))/4, 0, ±1/2, ±(3+sqrt(5))/4> <(3+3*sqrt(5))/4, ±1/2, ±(3+sqrt(5))/4, 0> <(3+3*sqrt(5))/4, ±(3+sqrt(5))/4, 0, ±1/2> <(3+3*sqrt(5))/4, ±(1+sqrt(5))/4, ±(1+sqrt(5))/4, ±(1+sqrt(5))/4>