Paper cutting (ConceptTopic, 4)
From Hi.gher. Space
(Difference between revisions)
m |
m (ontology) |
||
(7 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
+ | <[#ontology [kind topic] [cats Essays Topology]]> | ||
This page documents the results cutting a twisted loop of paper. | This page documents the results cutting a twisted loop of paper. | ||
== Cutting in half == | == Cutting in half == | ||
- | + | <[#embed [hash 1PWBJA7JSTS04YJKW08GPYG94Z]]> | |
*A 0-twist ([[hose]]) goes to two separate 0-twists: | *A 0-twist ([[hose]]) goes to two separate 0-twists: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
|} | |} | ||
- | *A 1-twist ([[Möbius strip]]) goes to a long | + | *A 1-twist ([[Möbius strip]]) goes to a long 4-twist: |
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
+ | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> | ||
+ | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> | ||
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
+ | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> | ||
+ | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> | ||
|} | |} | ||
Line 58: | Line 63: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash WP9ZMY702T24GVZN7THY2NMHJB]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 3DZW6ZY0W14WMEZ5YR90J3FXNY]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash WWYRA3WYXE5CPRV1E5BXTV301B]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash W228RY1J3K4BPRG0GKWVWM6QPT]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
|} | |} | ||
Line 82: | Line 87: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash K514JP16X9A7WZRYWBK0JMHH3B]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | |colspan="2"| | + | |colspan="2"|<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 2Z1589EQBSWV8H6SMMN9M0Q5YG]]> |
|} | |} | ||
Line 109: | Line 114: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash WP9ZMY702T24GVZN7THY2NMHJB]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 3DZW6ZY0W14WMEZ5YR90J3FXNY]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash WWYRA3WYXE5CPRV1E5BXTV301B]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash W228RY1J3K4BPRG0GKWVWM6QPT]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
|} | |} | ||
Line 139: | Line 144: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
|? | |? | ||
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | |colspan="2"| | + | |colspan="2"|<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
|? | |? | ||
|} | |} | ||
Line 172: | Line 177: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash WP9ZMY702T24GVZN7THY2NMHJB]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 3DZW6ZY0W14WMEZ5YR90J3FXNY]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash WWYRA3WYXE5CPRV1E5BXTV301B]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash W228RY1J3K4BPRG0GKWVWM6QPT]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
|} | |} | ||
== General rule == | == General rule == | ||
- | We can deduce that, when ''n'' > | + | We can deduce that, when ''n'' > 0, cutting an ''n''-twist will produce a single strip with ''n'' crossings and 2(''n''+1) twists if ''n'' is odd, or two linked strips each with ''n'' twists if ''n'' is even. |
== Cutting in thirds == | == Cutting in thirds == | ||
Line 214: | Line 219: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash WP9ZMY702T24GVZN7THY2NMHJB]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 3DZW6ZY0W14WMEZ5YR90J3FXNY]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash WWYRA3WYXE5CPRV1E5BXTV301B]]> |
- | | | + | |<[#embed [hash WTH0PGV1W1VKGVNTJPG98FCQRP]]> |
- | | | + | |<[#embed [hash W228RY1J3K4BPRG0GKWVWM6QPT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash SPBJ0VG8QWS9GK1DW3M7PSVDY4]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
|} | |} | ||
Line 246: | Line 251: | ||
{|cellpadding="0" cellspacing="0" | {|cellpadding="0" cellspacing="0" | ||
- | | | + | |<[#embed [hash 456DGFJD4RGHCGVR4AA96SV9FF]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash T3XZTVFTKJK4C7GQCP2E4F9TE1]]> |
- | | | + | |<[#embed [hash DPC5Y0TCPCGTP4AA0RESP6RM81]]> |
- | | | + | |<[#embed [hash WP9ZMY702T24GVZN7THY2NMHJB]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 3DZW6ZY0W14WMEZ5YR90J3FXNY]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash K514JP16X9A7WZRYWBK0JMHH3B]]> |
|- | |- | ||
- | | | + | |<[#embed [hash S948W45H3QQGJNAVPT3SA8CMWC]]> |
- | |colspan="2"| | + | |colspan="2"|<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash 7VYJYHCTE6VCAVWPQFT26A8S9G]]> |
- | | | + | |<[#embed [hash 1FJ1RF259DFJT3XZGAJ7GPXQ82]]> |
- | | | + | |<[#embed [hash WWYRA3WYXE5CPRV1E5BXTV301B]]> |
- | |colspan="2"| | + | |colspan="2"|<[#embed [hash RD2CRECEJ1MCR73SYPMWE2W5JT]]> |
- | | | + | |<[#embed [hash W228RY1J3K4BPRG0GKWVWM6QPT]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash SNSCP2SBPMXTR1YG4GTRE1EQGP]]> |
- | | | + | |<[#embed [hash 2Z1589EQBSWV8H6SMMN9M0Q5YG]]> |
|} | |} | ||
Line 280: | Line 285: | ||
*Cutting a 3-twist in half produces an 8-twist with a trefoil knot. Cutting this in half produces two interlinked 8-twists, each with their own trefoil knot, but also crossing in multiple other places. | *Cutting a 3-twist in half produces an 8-twist with a trefoil knot. Cutting this in half produces two interlinked 8-twists, each with their own trefoil knot, but also crossing in multiple other places. | ||
+ | |||
+ | *Cutting a 1-twist in thirds and then cutting the new 1-twist in half produces two 4-twists, linked in multiple places. | ||
== See also == | == See also == | ||
*[[Manifold]] | *[[Manifold]] | ||
- | |||
- |
Latest revision as of 23:24, 11 February 2014
This page documents the results cutting a twisted loop of paper.
Cutting in half
- A 0-twist (hose) goes to two separate 0-twists:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
- A 1-twist (Möbius strip) goes to a long 4-twist:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
- A 2-twist goes to two linked together 2-twists:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
- A 3-twist goes to a long 8-twist containing a trefoil knot:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
- A 4-twist goes to two linked together 4-twists:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
- A 5-twist goes to a long 12-twist containing a knot with five crossings:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ? |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ? |
- A 6-twist goes to two linked together 6-twists:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
General rule
We can deduce that, when n > 0, cutting an n-twist will produce a single strip with n crossings and 2(n+1) twists if n is odd, or two linked strips each with n twists if n is even.
Cutting in thirds
It is easy to see that cutting a loop into thirds rather than in half would be the same as above for an even number of twists. Therefore, the following concerns only loops with odd numbers of twists.
- A 1-twist goes to a short 1-twist linked to a long 4-twist:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
- A 3-twist goes to a short 3-twist linked to a long 8-twist containing a trefoil knot:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(There are more crossings between the two loops than shown above)
Repeated cuttings
- Cutting a 3-twist in half produces an 8-twist with a trefoil knot. Cutting this in half produces two interlinked 8-twists, each with their own trefoil knot, but also crossing in multiple other places.
- Cutting a 1-twist in thirds and then cutting the new 1-twist in half produces two 4-twists, linked in multiple places.