Cylspherinder (EntityTopic, 13)
From Hi.gher. Space
(Difference between revisions)
m |
m (ontology) |
||
(4 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
+ | <[#ontology [kind topic] [cats 5D Tapertope Toratope Bracketope Curved]]> | ||
{{STS Shape | {{STS Shape | ||
- | | name= | + | | name=Cylspherinder |
| dim=5 | | dim=5 | ||
- | | elements= | + | | elements=2, 1, 0, 0, 0 |
| genus=0 | | genus=0 | ||
| ssc=[(xy)(zwφ)] | | ssc=[(xy)(zwφ)] | ||
Line 15: | Line 16: | ||
| index=14a | | index=14a | ||
}}{{STS Bracketope | }}{{STS Bracketope | ||
- | | index= | + | | index=? |
}}}} | }}}} | ||
- | + | A '''cylspherinder''' is the [[Cartesian product]] of a [[sphere]] and a [[circle]]. It is the [[expanded rotatope]] of the [[torisphere]] and [[spheritorus]]. | |
- | A '''cylspherinder''' is the [[Cartesian product]] of a [[sphere]] and a [[circle]]. It is the [[expanded rotatope]] of the [[ | + | |
== Equations == | == Equations == | ||
Line 34: | Line 34: | ||
{{Tapertope Nav|31|32|33|41<br>Glominder|32<br>Cylspherinder|311<br>Cubspherinder|tera}} | {{Tapertope Nav|31|32|33|41<br>Glominder|32<br>Cylspherinder|311<br>Cubspherinder|tera}} | ||
{{Toratope Nav A|13|14|15|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|(III)(II)<br>Cylspherinder|((III)(II))<br>Cylspherintigroid|((II)I)(II)<br>Cyltorinder|(((II)I)(II))<br>Cyltorintigroid|tera}} | {{Toratope Nav A|13|14|15|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|(III)(II)<br>Cylspherinder|((III)(II))<br>Cylspherintigroid|((II)I)(II)<br>Cyltorinder|(((II)I)(II))<br>Cyltorintigroid|tera}} | ||
- | {{Bracketope Nav| | + | {{Bracketope Nav|?|?|?|?<br>?|[(II)(III)]<br>Cylspherinder|?<br>?|tera}} |
Latest revision as of 22:58, 11 February 2014
A cylspherinder is the Cartesian product of a sphere and a circle. It is the expanded rotatope of the torisphere and spheritorus.
Equations
- Variables:
a ⇒ radius of the sphere
b ⇒ radius of the circle
- The hypervolumes of a cylspherinder are given by:
Unknown
Rolling
The cylspherinder will always roll when placed on a surface. If it rests on one of its tera, it can cover the space of a line. If it rests on its other teron, it can cover the space of a plane.
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
31. 41 Glominder | 32. 32 Cylspherinder | 33. 311 Cubspherinder |
List of tapertopes |
13a. ((II)I)II Cubtorinder | 13b. (((II)I)II) Toracubtorinder | 14a. (III)(II) Cylspherinder | 14b. ((III)(II)) Cylspherintigroid | 15a. ((II)I)(II) Cyltorinder | 15b. (((II)I)(II)) Cyltorintigroid |
List of toratopes |
?. ? ? | ?. [(II)(III)] Cylspherinder | ?. ? ? |
List of bracketopes |