Cylspherinder (EntityTopic, 13)

From Hi.gher. Space

(Difference between revisions)
m
m (ontology)
 
(8 intermediate revisions not shown)
Line 1: Line 1:
 +
<[#ontology [kind topic] [cats 5D Tapertope Toratope Bracketope Curved]]>
{{STS Shape
{{STS Shape
-
| name=Culspherinder
+
| name=Cylspherinder
| dim=5
| dim=5
-
| elements=?, ?, ?, ?, ?
+
| elements=2, 1, 0, 0, 0
| genus=0
| genus=0
| ssc=[(xy)(zwφ)]
| ssc=[(xy)(zwφ)]
Line 11: Line 12:
| index=32
| index=32
}}{{STS Toratope
}}{{STS Toratope
-
| holeseq=[1, 1]
+
| expand=[[Cylspherinder|32]]
| notation=(III)(II)
| notation=(III)(II)
| index=14a
| index=14a
}}{{STS Bracketope
}}{{STS Bracketope
-
| index=169
+
| index=?
}}}}
}}}}
-
 
+
A '''cylspherinder''' is the [[Cartesian product]] of a [[sphere]] and a [[circle]]. It is the [[expanded rotatope]] of the [[torisphere]] and [[spheritorus]].
-
A '''cylspherinder''' is the [[Cartesian product]] of a [[sphere]] and a [[circle]].
+
== Equations ==
== Equations ==
Line 32: Line 32:
{{Pentashapes}}
{{Pentashapes}}
-
{{Tapertope Nav|31|32|33|41<br>Glominder|32<br>Cylspherinder|311<br>Cubspherinder|chora}}
+
{{Tapertope Nav|31|32|33|41<br>Glominder|32<br>Cylspherinder|311<br>Cubspherinder|tera}}
-
{{Toratope Nav A|13|14|15|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|(III)(II)<br>Cylspherinder|((III)(II))<br>Cylspherintigroid|((II)I)(II)<br>Cyltorinder|(((II)I)(II))<br>Cyltorintigroid|chora}}
+
{{Toratope Nav A|13|14|15|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|(III)(II)<br>Cylspherinder|((III)(II))<br>Cylspherintigroid|((II)I)(II)<br>Cyltorinder|(((II)I)(II))<br>Cyltorintigroid|tera}}
-
{{Bracketope Nav|168|169|170|[(xy)(<zw>φ)]<br>''Unknown shape''|[(xy)(zwφ)]<br>Cylspherinder|<[xy][zwφ]><br>''Unknown shape''|tera}}
+
{{Bracketope Nav|?|?|?|?<br>?|[(II)(III)]<br>Cylspherinder|?<br>?|tera}}

Latest revision as of 22:58, 11 February 2014

A cylspherinder is the Cartesian product of a sphere and a circle. It is the expanded rotatope of the torisphere and spheritorus.

Equations

  • Variables:
a ⇒ radius of the sphere
b ⇒ radius of the circle
Unknown

Rolling

The cylspherinder will always roll when placed on a surface. If it rests on one of its tera, it can cover the space of a line. If it rests on its other teron, it can cover the space of a plane.


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


31. 41
Glominder
32. 32
Cylspherinder
33. 311
Cubspherinder
List of tapertopes


13a. ((II)I)II
Cubtorinder
13b. (((II)I)II)
Toracubtorinder
14a. (III)(II)
Cylspherinder
14b. ((III)(II))
Cylspherintigroid
15a. ((II)I)(II)
Cyltorinder
15b. (((II)I)(II))
Cyltorintigroid
List of toratopes


?. ?
?
?. [(II)(III)]
Cylspherinder
?. ?
?
List of bracketopes