Cubspherinder (EntityTopic, 13)

From Hi.gher. Space

(Difference between revisions)
m
(update bracketope nav)
Line 15: Line 15:
| index=12a
| index=12a
}}{{STS Bracketope
}}{{STS Bracketope
-
| index=58
+
| index=?
}}}}
}}}}
Line 23: Line 23:
{{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|tera}}
{{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|tera}}
{{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|tera}}
{{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|tera}}
-
{{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}}
+
{{Bracketope Nav|?|?|?|?<br>?|[(III)II]<br>Cubspherinder|?<br>?|tera}}

Revision as of 17:43, 18 November 2011


A cubspherinder is the Cartesian product of a sphere and a square. It is also the prism with a spherinder as the base, so it may also be called a spherical diprism.


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


32. 32
Cylspherinder
33. 311
Cubspherinder
34. 221
Duocyldyinder
List of tapertopes


11a. (II)(II)I
Duocyldyinder
11b. ((II)(II)I)
Toraduocyldyinder
12a. (III)II
Cubspherinder
12b. ((III)II)
Toracubspherinder
13a. ((II)I)II
Cubtorinder
13b. (((II)I)II)
Toracubtorinder
List of toratopes


?. ?
?
?. [(III)II]
Cubspherinder
?. ?
?
List of bracketopes