Pentasphere (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m (fix)
(update bracketope nav)
 
(14 intermediate revisions not shown)
Line 1: Line 1:
-
{{Shape|Pentasphere|''No image''|5|1, 0, 0, 0, 0|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]][[Glome|L]]L|5 (xyzwφ)|N/A|N/A|N/A|47|(xyzwφ)|112|pure}}
+
<[#ontology [kind topic] [cats 5D Hypersphere]]>
 +
{{STS Shape
 +
| name=Pentasphere
 +
| dim=5
 +
| elements=1, 0, 0, 0, 0
 +
| genus=0
 +
| ssc=(xyzwφ)
 +
| ssc2=T5
 +
| extra={{STS Tapertope
 +
| order=1, 0
 +
| notation=5
 +
| index=30
 +
}}{{STS Toratope
 +
| expand=[[Pentasphere|5]]
 +
| notation=(IIIII)
 +
| index=9b
 +
}}{{STS Bracketope
 +
| index=33
 +
}}}}
-
== Geometry ==
+
== Equations ==
-
=== Equations ===
+
*Variables:
*Variables:
<blockquote>''r'' ⇒ radius of the pentasphere</blockquote>
<blockquote>''r'' ⇒ radius of the pentasphere</blockquote>
Line 14: Line 31:
total surface area = 0<br>
total surface area = 0<br>
total surcell volume = 0<br>
total surcell volume = 0<br>
-
surteron bulk = <sup>2</sup>r<sup>4</sup>8<sup>-1</sup><br>
+
surteron bulk = {{Over|π<sup>2</sup>|2}} {{DotHV|4|r}}<br>
-
pentavolume = π<sup>2</sup>r<sup>5</sup>8<sup>-1</sup>
+
pentavolume = {{Over|π<sup>2</sup>|8}} {{DotHV|5|r}}
</blockquote>
</blockquote>
*The [[realmic]] [[cross-section]]s (''n'') of a pentasphere are:
*The [[realmic]] [[cross-section]]s (''n'') of a pentasphere are:
<blockquote>[!x,!y,!z,!w,!φ] ⇒ [[glome]] of radius (''r''cos(π''n''/2))</blockquote>
<blockquote>[!x,!y,!z,!w,!φ] ⇒ [[glome]] of radius (''r''cos(π''n''/2))</blockquote>
-
<br clear="all"><br>
+
 
-
{{Polytera}}
+
{{Pentashapes}}
-
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism}}
+
{{Tapertope Nav|29|30|31|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|41<br>Glominder|tera}}
 +
{{Toratope Nav B|8|9|10|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|(II)III<br>Tesserinder|((II)III)<br>Toratesserinder|tera}}
 +
{{Bracketope Nav|32|33|34|<nowiki><IIIII></nowiki><br>Aeroteron|(IIIII)<br>Pentasphere|[(II)III]<br>Tesserinder|tera}}

Latest revision as of 17:38, 18 November 2011


Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = π22 · r4
pentavolume = π28 · r5
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


29. 1111
Duotrianglinder
30. 5
Pentasphere
31. 41
Glominder
List of tapertopes


8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
10a. (II)III
Tesserinder
10b. ((II)III)
Toratesserinder
List of toratopes


32. <IIIII>
Aeroteron
33. (IIIII)
Pentasphere
34. [(II)III]
Tesserinder
List of bracketopes