Pentasphere (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m |
(update bracketope nav) |
||
(7 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | {{Shape | + | <[#ontology [kind topic] [cats 5D Hypersphere]]> |
- | + | {{STS Shape | |
| name=Pentasphere | | name=Pentasphere | ||
| dim=5 | | dim=5 | ||
| elements=1, 0, 0, 0, 0 | | elements=1, 0, 0, 0, 0 | ||
| genus=0 | | genus=0 | ||
- | |||
| ssc=(xyzwφ) | | ssc=(xyzwφ) | ||
- | | | + | | ssc2=T5 |
- | | | + | | extra={{STS Tapertope |
- | | | + | | order=1, 0 |
- | }} | + | | notation=5 |
+ | | index=30 | ||
+ | }}{{STS Toratope | ||
+ | | expand=[[Pentasphere|5]] | ||
+ | | notation=(IIIII) | ||
+ | | index=9b | ||
+ | }}{{STS Bracketope | ||
+ | | index=33 | ||
+ | }}}} | ||
== Equations == | == Equations == | ||
Line 24: | Line 31: | ||
total surface area = 0<br> | total surface area = 0<br> | ||
total surcell volume = 0<br> | total surcell volume = 0<br> | ||
- | surteron bulk = | + | surteron bulk = {{Over|π<sup>2</sup>|2}} {{DotHV|4|r}}<br> |
- | pentavolume = π<sup>2</sup>r | + | pentavolume = {{Over|π<sup>2</sup>|8}} {{DotHV|5|r}} |
</blockquote> | </blockquote> | ||
Line 32: | Line 39: | ||
{{Pentashapes}} | {{Pentashapes}} | ||
- | {{ | + | {{Tapertope Nav|29|30|31|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|41<br>Glominder|tera}} |
- | {{ | + | {{Toratope Nav B|8|9|10|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|(II)III<br>Tesserinder|((II)III)<br>Toratesserinder|tera}} |
+ | {{Bracketope Nav|32|33|34|<nowiki><IIIII></nowiki><br>Aeroteron|(IIIII)<br>Pentasphere|[(II)III]<br>Tesserinder|tera}} |
Latest revision as of 17:38, 18 November 2011
Equations
- Variables:
r ⇒ radius of the pentasphere
- All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
- The hypervolumes of a pentasphere are given by:
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = π2∕2 · r4
pentavolume = π2∕8 · r5
- The realmic cross-sections (n) of a pentasphere are:
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
29. 1111 Duotrianglinder | 30. 5 Pentasphere | 31. 41 Glominder |
List of tapertopes |
8a. ((II)I)I Torinder | 8b. (((II)I)I) Ditorus | 9a. IIIII Penteract | 9b. (IIIII) Pentasphere | 10a. (II)III Tesserinder | 10b. ((II)III) Toratesserinder |
List of toratopes |
32. <IIIII> Aeroteron | 33. (IIIII) Pentasphere | 34. [(II)III] Tesserinder |
List of bracketopes |