Pentasphere (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m
(fix equations)
Line 31: Line 31:
total surface area = 0<br>
total surface area = 0<br>
total surcell volume = 0<br>
total surcell volume = 0<br>
-
surteron bulk = <sup>2</sup>r<sup>4</sup>8<sup>-1</sup><br>
+
surteron bulk = {{Over|π<sup>2</sup>|2}} {{DotHV|4|r}}<br>
-
pentavolume = π<sup>2</sup>r<sup>5</sup>8<sup>-1</sup>
+
pentavolume = {{Over|π<sup>2</sup>|8}} {{DotHV|5|r}}
</blockquote>
</blockquote>

Revision as of 16:00, 18 November 2011


Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = π22 · r4
pentavolume = π28 · r5
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


29. 1111
Duotrianglinder
30. 5
Pentasphere
31. 41
Glominder
List of tapertopes


8a. ((II)I)I
Torinder
8b. (((II)I)I)
Ditorus
9a. IIIII
Penteract
9b. (IIIII)
Pentasphere
10a. (II)III
Tesserinder
10b. ((II)III)
Toratesserinder
List of toratopes


147. (<xy>zwφ)
Narrow tricrind
148. (xyzwφ)
Pentasphere
149. ([<xy><zw>]φ)
Narrow tesseric crind
List of bracketopes