Polyomino (EntityTopic, 5)

From Hi.gher. Space

(Difference between revisions)
m (fix images)
Line 12: Line 12:
Here is a table of the polyominoes available with various c and d:
Here is a table of the polyominoes available with various c and d:
-
<blockquote>http://teamikaria.com/dl/AajgNE5JwCjIPTn-3WsKyIUF4n6XpMuSpyTWuJ0ZYkjXiPUi.png</blockquote>
+
<blockquote><[#img [hash 9HYZJMFD9ECAMRA1KPA12F6FZT]]></blockquote>
== Tetrominoes ==
== Tetrominoes ==
Line 19: Line 19:
<center>
<center>
{|
{|
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/WhNjPT0XVPNvrlB3LUo_qomMhPeotJQ8EK63Wax6jd4LWt54.png<br />[[O-block|O-block<br />Square block<br />Fat block]]
+
|valign="bottom" width="100" align="center"|<[#img [hash TTWTY9RX2ZK66RWY7C3VTRAJXN]]><br />[[O-block|O-block<br />Square block<br />Fat block]]
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/XKL5uAbYu_SukLyXYTvk2vW5Uf0MgzpizSpLjBATdeaoQW7x.png<br />[[L-block|L-block<br />(J-block)<br />Leg block]]
+
|valign="bottom" width="100" align="center"|<[#img [hash J6GGEX0Z026WWCW0S97TW40D23]]><br />[[L-block|L-block<br />(J-block)<br />Leg block]]
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/ZKAPJCOTR9M4I7PwwARQeKTtRaRn2TKJrCcLVIOAeZj8W03G.png<br />[[T-block|T-block<br />Tee block<br />&nbsp;]]
+
|valign="bottom" width="100" align="center"|<[#img [hash FPSYWR20E0HZE3VGPKK4M8QYT6]]><br />[[T-block|T-block<br />Tee block<br />&nbsp;]]
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/WnDJVgaBSaXny550v4kGW4zHVCfSoCJfbwmDXmpv1r27FP7E.png<br />[[I-block|I-block<br />Line block<br />&nbsp;]]
+
|valign="bottom" width="100" align="center"|<[#img [hash DK63YXH89FDYRGXN8AKEAWM3X8]]><br />[[I-block|I-block<br />Line block<br />&nbsp;]]
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/lvSMKVuXt60yL6_VwlN5Nvqks7tG_9wjRRw5-rRHRET_ooKK.png<br />[[Z-block|Z-block<br />(S-block)<br />Step block]]
+
|valign="bottom" width="100" align="center"|<[#img [hash 4DTEMEZTWSKB4W51PS21TRFY32]]><br />[[Z-block|Z-block<br />(S-block)<br />Step block]]
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/Rp0E0H3r9UZo8GztnetgnfYZthufaXfgXjxG-JOdeNjRecl2.png<br />[[Q-block|Q-block<br />(G-block)<br />Screw block]]
+
|valign="bottom" width="100" align="center"|<[#img [hash 42Z9WG799DZEJ34YGSV9C34Q25]]><br />[[Q-block|Q-block<br />(G-block)<br />Screw block]]
-
|valign="bottom" width="100" align="center"|http://teamikaria.com/dl/vupzbe5ANXgQ1nImwCm7Dp16F7PPekrUe4MsiL9n81BrfMlk.png<br />[[X-block|X-block<br />Corner block<br />&nbsp;]]
+
|valign="bottom" width="100" align="center"|<[#img [hash D0YTGGT3J3XRM1CS8GJBP21FQZ]]><br />[[X-block|X-block<br />Corner block<br />&nbsp;]]
|}
|}
</center>
</center>

Revision as of 20:14, 9 March 2011

A polyomino (also spelt polimino and polymino) is a collection of hypercubes joined so that one hypercell of one touches another hypercell of another. Polyominoes are named as follows:

  • Monomino - one hypercube.
  • Domino - two hypercubes.
  • Tromino - three hypercubes.
  • Tetromino - four hypercubes.

etc.

We can generalize sets of polyominoes as p(c,d) where c is the number of hypercubes and d is the number of dimensions.

In n dimensions, there are no new polyominoes that are not simply extrusions of n-1-dimensional polyominoes, if the number of hypercubes is equal to or less than the number of dimensions. In other words, p(c,d) = p(c,d-1) if d ≥ c.

Here is a table of the polyominoes available with various c and d:

ExPar: [#img] is obsolete, use [#embed] instead

Tetrominoes

Tetrominoes are arrangements of four orthogonally-connected cubes. There are seven tetrominoes:

ExPar: [#img] is obsolete, use [#embed] instead
O-block
Square block
Fat block
ExPar: [#img] is obsolete, use [#embed] instead
L-block
(J-block)
Leg block
ExPar: [#img] is obsolete, use [#embed] instead
T-block
Tee block
 
ExPar: [#img] is obsolete, use [#embed] instead
I-block
Line block
 
ExPar: [#img] is obsolete, use [#embed] instead
Z-block
(S-block)
Step block
ExPar: [#img] is obsolete, use [#embed] instead
Q-block
(G-block)
Screw block
ExPar: [#img] is obsolete, use [#embed] instead
X-block
Corner block
 

In Tetris, only the first five are available, but since you're only playing in 2D there, two of them are chiral, bringing the count back up to seven again.

The sixth is actually chiral in 3D, so that brings the count up to eight.

Octominoes

There are two special properties about octominoes:

  • The first polyomino with a hole is an octomino.
  • The first polyomino with no linear symmetry, but rotational symmetry of order 4 is an octomino.