Pentasphere (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 38: | Line 38: | ||
{{Pentashapes}} | {{Pentashapes}} | ||
- | {{Tapertope Nav|29|30|31|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|41<br>Glominder| | + | {{Tapertope Nav|29|30|31|1<sup>1</sup>1<sup>1</sup><br>Duotrianglinder|5<br>Pentasphere|41<br>Glominder|tera}} |
- | {{Toratope Nav B|8|9|10|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|(II)III<br>Tesserinder|((II)III)<br>Toratesserinder| | + | {{Toratope Nav B|8|9|10|((II)I)I<br>Torinder|(((II)I)I)<br>Ditorus|IIIII<br>Penteract|(IIIII)<br>Pentasphere|(II)III<br>Tesserinder|((II)III)<br>Toratesserinder|tera}} |
{{Bracketope Nav|147|148|149|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|([<xy><zw>]φ)<br>Narrow tesseric crind|tera}} | {{Bracketope Nav|147|148|149|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|([<xy><zw>]φ)<br>Narrow tesseric crind|tera}} |
Revision as of 14:17, 26 November 2009
Equations
- Variables:
r ⇒ radius of the pentasphere
- All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
- The hypervolumes of a pentasphere are given by:
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
- The realmic cross-sections (n) of a pentasphere are:
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
29. 1111 Duotrianglinder | 30. 5 Pentasphere | 31. 41 Glominder |
List of tapertopes |
8a. ((II)I)I Torinder | 8b. (((II)I)I) Ditorus | 9a. IIIII Penteract | 9b. (IIIII) Pentasphere | 10a. (II)III Tesserinder | 10b. ((II)III) Toratesserinder |
List of toratopes |
147. (<xy>zwφ) Narrow tricrind | 148. (xyzwφ) Pentasphere | 149. ([<xy><zw>]φ) Narrow tesseric crind |
List of bracketopes |